Thu, 24 Oct 2024
17:00
L3

Generic central sequence properties in II$_1$ factors

Jenny Pi
(University of Oxford)
Abstract

Von Neumann algebras which are not matrix algebras, yet still possess a unique trace, form a basic class called II$_1$ factors. The set of asymptotically commuting elements (or, the relative commutant of the algebra within its own ultrapower), dubbed the central sequence algebra, can take many different forms. In this talk, we discuss an elementary class of II$_1$ factors whose central sequence algebra is again a II$_1$ factor. We show that the class of infinitely generic II$_1$ factors possess this property, and ask some related questions about properties of other existentially closed II$_1$ factors. This is based on joint work with Isaac Goldbring, David Jekel, and Srivatsav Kunnawalkam Elayavalli.

Thu, 17 Oct 2024
17:00
L3

Definable convolution and idempotent Keisler measures

Kyle Gannon (Peking University)
Abstract

Given a locally compact topological group, there is a correspondence between idempotent probability measures and compact subgroups. An analogue of this correspondence continues into the model theoretic setting. In particular, if G is a stable group, then there is a one-to-one correspondence between idempotent Keisler measures and type-definable subgroups. The proof of this theorem relies heavily on the theory of local ranks in stability theory. Recently, we have been able to extend a version of this correspondence to the abelian setting. Here, we prove that fim idempotent Keisler measures correspond to fim subgroups. These results rely on recent work of Conant, Hanson and myself connecting generically stable measures to generically stable types over the randomization. This is joint work with Artem Chernikov and Krzysztof Krupinski.

Thu, 07 Nov 2024
16:00
L3

E-functions and their roots

Peter Jossen
(King's College London)
Abstract
E-functions are a special class of entire function given by power series with algebraic coefficients, particular examples of which are the exponential function or Bessel functions. They were introduced by Siegel in the 1930's.
 
While special values of E-functions are relatively well understood, their roots remain mysterious in many ways. I will explain how roots of E-functions are distributed in the complex plane (essentially a Theorem of Pólya), and discuss a couple of related questions and conjectures. From the roots of an E-function one may also fabricate a "spectral" zeta function, which turns out to have some interesting properties.
Mon, 28 Oct 2024
15:30
L3

Higher Order Lipschitz Functions in Data Science

Dr Andrew Mcleod
(Mathematical Institute)
Abstract

The notion of Lip(gamma) Functions, for a parameter gamma > 0, introduced by Stein in the 1970s (building on earlier work of Whitney) is a notion of smoothness that is well-defined on arbitrary closed subsets (including, in particular, finite subsets) that is instrumental in the area of Rough Path Theory initiated by Lyons and central in recent works of Fefferman. Lip(gamma) functions provide a higher order notion of Lipschitz regularity that is well-defined on arbitrary closed subsets, and interacts well with the more classical notion of smoothness on open subsets. In this talk we will survey the historical development of Lip(gamma) functions and illustrate some fundamental properties that make them an attractive class of function to work with from a machine learning perspective. In particular, models learnt within the class of Lip(gamma) functions are well-suited for both inference on new unseen input data, and for allowing cost-effective inference via the use of sparse approximations found via interpolation-based reduction techniques. Parts of this talk will be based upon the works https://arxiv.org/abs/2404.06849 and https://arxiv.org/abs/2406.03232.

Mon, 02 Dec 2024
15:30
L3

Chasing regularization by noise of 3D Navier-Stokes equations

Dr Antonio Agresti
(Delft University of Technology )
Abstract

Global well-posedness of 3D Navier-Stokes equations (NSEs) is one of the biggest open problems in modern mathematics. A long-standing conjecture in stochastic fluid dynamics suggests that physically motivated noise can prevent (potential) blow-up of solutions of the 3D NSEs. This phenomenon is often referred to as `regularization by noise'. In this talk, I will review recent developments on the topic and discuss the solution to this problem in the case of the 3D NSEs with small hyperviscosity, for which the global well-posedness in the deterministic setting remains as open as for the 3D NSEs. An extension of our techniques to the case without hyperviscosity poses new challenges at the intersection of harmonic and stochastic analysis, which, if time permits, will be discussed at the end of the talk.

Mon, 25 Nov 2024
15:30
L3

Stochastic quantization of fractional $\Phi^4_3$ model of Euclidean quantum field theory

Dr Paweł Duch
(Ecole Polytechnique Federale de Lausanne)
Abstract

The construction of the measure of the $\Phi^4_3$ model in the 1970s has been one of the major achievements of constructive quantum field theory. In the 1980s Parisi and Wu suggested an alternative way of constructing quantum field theory measures by viewing them as invariant measures of certain stochastic PDEs. However, the highly singular nature of these equations prevented their application in rigorous constructions until the breakthroughs in the area of singular stochastic PDEs in the past decade. After explaining the basic idea behind stochastic quantization proposed by Parisi and Wu I will show how to apply this technique to construct the measure of a certain quantum field theory model generalizing the $\Phi^4_3$ model called the fractional $\Phi^4$ model. The measure of this model is obtained as a perturbation of the Gaussian measure with covariance given by the inverse of a fractional Laplacian. Since the Gaussian measure is supported in the space of Schwartz distributions and the quartic interaction potential of the model involves pointwise products, to construct the measure it is necessary to solve the so-called renormalization problem. Based on joint work with M. Gubinelli and P. Rinaldi.

Mon, 18 Nov 2024
15:30
L3

Critical phenomena in intermediate dimensions

Dr Pierre-Francois Rodriguez
(Imperial College )
Abstract

The talk will focus on recent developments regarding the (near-)critical behaviour of certain statistical physics models with long-range dependence in dimensions larger than 2, but smaller than 6, above which mean-field behaviour is known to set in. This “intermediate” regime remains a great challenge for mathematicians. The models revolve around a certain percolation phase transition that brings into play very natural probabilistic objects, such as random walk traces and the Gaussian free field. 

Mon, 21 Oct 2024
15:30
L3

Large deviations for the Φ^4_3 measure via Stochastic Quantisation

Dr Tom Klose
(Mathematical Institute)
Abstract
The Φ^4_3 measure is one of the easiest non-trivial examples of a Euclidean quantum field theory (EQFT) whose rigorous construction in the 1970's has been one of the celebrated achievements of the Constructive QFT community. In recent years, progress in the field of singular stochastic PDEs, initiated by the theory of regularity structures, has allowed for a new construction of the Φ^4_3 EQFT as the invariant measure of a previously ill-posed Langevin dynamics – a strategy originally proposed by Parisi and Wu ('81) under the name Stochastic Quantisation. In this talk, I will demonstrate that the same idea also allows to transfer the large deviation principle for the Φ^4_3 dynamics, obtained by Hairer and Weber ('15), to the corresponding EQFT. Our strategy is inspired by earlier works of Sowers ('92) and Cerrai and Röckner ('05) for non-singular dynamics and potentially also applies to other EQFT measures. This talk is based on joint work with Avi Mayorcas (University of Bath), see here: arXiv:2402.00975

 
Mon, 04 Nov 2024
15:30
L3

Statistical Inference for weakly interacting diffusions and their mean field limit

Prof Greg Pavliotis
(Imperial College )
Abstract

We consider the problem of parametric and non-parametric statistical inference for systems of weakly interacting diffusions and of their mean field limit. We present several parametric inference methodologies, based on stochastic gradient descent in continuous time, spectral methods and the method of moments. We also show how one can perform fully nonparametric Bayesian inference for the mean field McKean-Vlasov PDE. The effect of non-uniqueness of stationary states of the mean field dynamics on the inference problem is elucidated.

Subscribe to L3