Thu, 13 Mar 2025
17:00
L3

Non-expanding polynomials

Tingxiang Zou
(University of Bonn)
Abstract

Let F(x,y) be a polynomial over the complex numbers. The Elekes-Ronyai theorem says that if F(x,y) is not essentially addition or multiplication, then F(x,y) exhibits expansion: for any finite subset A, B of complex numbers of size n, the size of F(A,B)={F(a,b):a in A, b in B} will be much larger than n. In fact, it is proved that |F(A,B)|>Cn^{4/3} for some constant C. In this talk, I will present a recent joint work with Martin Bays, which is an asymmetric and higher dimensional version of the Elekes-Rónyai theorem, where A and B can be taken to be of different sizes and y a tuple. This result is achieved via a generalisation of the Elekes-Szabó theorem.

Thu, 06 Mar 2025

17:00 - 18:00
L3

Orthogonal types to the value group and descent

Mariana Vicaria
(University of Münster)
Abstract
First, I will present a simplified proof of descent for stably dominated types in ACVF. I will also state a more general version of descent for stably dominated types in any theory, dropping the hypothesis of the existence of invariant extensions. This first part is joint work with Pierre Simon.
 
In the second part, motivated by the study of the space of definable types orthogonal to the value group in a henselian valued field and their cohomology; I will present a theorem that states that over an algebraically closed base of imaginary elements,  a global invariant type is residually dominated (essentially controlled by the residue field) if and only if it is orthogonal to the value group , if and only if its reduct in ACVF is stably dominated. This is joint work with Pablo Cubides and Silvain Rideau- Kikuchi. The result extend to some valued fields with operators.
Thu, 27 Feb 2025

17:00 - 18:00
L3

Representation Type, Decidability and Pseudofinite-dimensional Modules over Finite-dimensional Algebras

Lorna Gregory
(University of East Anglia)
Abstract
The representation type of a finite-dimensional k-algebra is an algebraic measure of how hard it is to classify its finite-dimensional indecomposable modules.
Intuitively, a finite-dimensional k-algebra is of tame representation type if we can classify its finite-dimensional modules and wild representation type if its module category contains a copy of the category of finite-dimensional modules of all other finite-dimensional k-algebras. An archetypical (although not finite-dimensional) tame algebra is k[x]. The structure theorem for finitely generated modules over a PID describes its finite-dimensional modules. Drozd’s famous dichotomy theorem states that all finite-dimensional algebras are either wild or tame.
The tame/wild dividing line is not seen by standard model theoretic invariants or even the more specialised invariants coming from Model Theory of Modules. A long-standing conjecture of Mike Prest claims that a finite-dimensional algebra has decidable theory of modules if and only if it is of tame representation type. More recently, I conjectured that a finite-dimensional algebra has decidable theory of (pseudo)finite dimensional modules if and only if it is of tame representation type. This talk will focus on recent work providing evidence for the second conjecture.
Thu, 20 Feb 2025

17:00 - 18:00
L3

Ax-Kochen/Ershov principles in positive characteristic

Franziska Jahnke
(University of Münster)
Abstract

A major open problem in the model theory of valued fields is to gain an understanding of the first-order theory of the power series field F((t)), where F denotes a finite field. For sufficiently "nice" henselian valued fields, the Ax-Kochen/Ershov philosophy allows to reduce questions of elementary equivalence and elementary embeddings to the analogous questions about the value group and residue field (or related structures). In my talk, I will present a new such principle which applies in particular to a large class of algebraic extensions of F((t)), albeit not to F((t)) itself. The talk is based on joint work with Konstantinos Kartas and Jonas van der Schaaf.

Thu, 13 Feb 2025
17:00
L3

The open core of NTP2 topological structures

Pablo Andujar Guerrero
(University of Leeds)
Abstract

The open core of a structure is the reduct generated by the open definable sets. Tame topological structures (e.g. o-minimal) are often inter-definable with their open core. Structures such as M = (ℝ,<, +, ℚ) are wild in the sense that they define a dense co-dense set. Still, M is NIP and its open core is o-minimal. In this talk, we push forward the thesis that the open core of an NTP2 (a generalization of NIP) topological structure is tame. Our main result is that, under suitable conditions, the open core has quantifier elimination (every definable set is constructible), and its definable functions are generically continuous.

Thu, 06 Feb 2025
17:00
L3

Asymptotic theories: from finite structures to infinite fields

Philip Dittmann
(University of Manchester)
Abstract

I will discuss several interesting examples of classes of structures for which there is a sensible first-order theory of "almost all" structures in the class, for certain notions of "almost all". These examples include the classical theory of almost all finite graphs due to Glebskij-Kogan-Liogon'kij-Talanov and Fagin (and many more examples from finite model theory), as well as more recent examples from the model theory of infinite fields: the theory of almost all algebraic extensions and the universal/existential theory of almost all completions of a global field (both joint work with Arno Fehm). Interestingly, such asymptotic theories are sometimes quite well-behaved even when the base theories are not.

Thu, 13 Feb 2025

12:00 - 13:00
L3

Various

Various Speakers from OCIAM Year 2 Graduates
(Mathematical Institute)
Tue, 21 Jan 2025

16:00 - 17:00
L3

Quo Vadis

Nati Linial
(Hebrew University of Jerusalem)
Abstract

Paraphrasing the title of Riemann’s famous lecture of 1854 I ask: What is the most rudimentary notion of a geometry? A possible answer is a path system: Consider a finite set of “points” $x_1,…,x_n$ and provide a recipe how to walk between $x_i$ and $x_j$ for all $i\neq j$, namely decide on a path $P_{ij}$, i.e., a sequence of points that starts at $x_i$ and ends at $x_j$, where $P_{ji}$ is $P_{ij}$, in reverse order. The main property that we consider is consistency. A path system is called consistent if it is closed under taking subpaths. What do such systems look like? How to generate all of them? We still do not know. One way to generate a consistent path system is to associate a positive number $w_{ij}>0$ with every pair and let $P_{ij}$ be the corresponding $w$-shortest path between $x_i$ and $x_j$. Such a path system is called metrical. It turns out that the class of consistent path systems is way richer than the metrical ones.

My main emphasis in this lecture is on what we don’t know and wish to know, yet there is already a considerable body of work that we have done on the subject.

The new results that I will present are joint with my student Daniel Cizma as well as with him and with Maria Chudnovsky.

Wed, 07 May 2025
16:00
L3

Drawing Knots on Surfaces

Samuel Ketchell
(University of Oxford)
Abstract

There is a well-known class of knots, called torus knots, which are those that can be drawn on a "standardly embedded" torus (one that separates the 3-sphere into two solid tori). A fairly natural property of other knots to consider is the genus necessary for that knot to be drawn on a standardly embedded genus g surface. This knot invariant has been studied under the name "embeddability". The goal of this talk is to introduce the invariant, look at some upper and lower bounds in terms of other invariants, and examine its behavior under connected sum.

Wed, 29 Jan 2025
15:00
L3

Emergent Phenomena in Critical Models of Statistical Physics: Exploring 2D Percolation

Prof Hugo Duminil-Copin
(IHES)
Abstract

For over 150 years, the study of phase transitions—such as water freezing into ice or magnets losing their magnetism—has been a cornerstone of statistical physics. In this talk, we explore the critical behavior of two-dimensional percolation models, which use random graphs to model the behavior of porous media. At the critical point, remarkable symmetries and emergent properties arise, providing precise insights into the nature of these systems and enriching our understanding of phase transitions. The presentation is designed to be accessible and does not assume any prior background in percolation theory.

 

About the Speaker

Hugo Duminil-Copin is is a French mathematician recognised for his groundbreaking work in probability theory and mathematical physics. He was appointed full professor at the University of Geneva in 2014 and since 2016 has also been a permanent professor at the Institut des Hautes Études Scientifiques (IHES) in France. In 2022 he was awarded the Fields Medal, the highest distinction in mathematics.

Subscribe to L3