Fri, 18 Jan 2019

14:00 - 15:00
L3

Pareto optimality and complex networks

Professor Giuseppe Nicosia
(Cambridge Systems Biology Centre University of Cambridge)
Abstract

In this talk I will show the nature, the properties and the features of the Pareto Optimality in a diverse set of phenomena modeled as complex networks.
I will present a composite design methodology for multi-objective modeling and optimization of complex networks.  The method is based on the synergy of different algorithms and computational techniques for the analysis and modeling of natural systems (e.g., metabolic pathways in prokaryotic and eukaryotic cells) and artificial systems (e.g., traffic networks, analog circuits and solar cells).

“Pareto Optimality in Multilayer Network Growth”
G. Nicosia et al, Phys. Rev. Lett., 2018

Thu, 21 Feb 2019

16:00 - 17:30
L3

Strategies for Multilevel Monte Carlo for Bayesian Inversion

Professor Kody Law
(University of Manchester)
Abstract

This talk will concern the problem of inference when the posterior measure involves continuous models which require approximation before inference can be performed. Typically one cannot sample from the posterior distribution directly, but can at best only evaluate it, up to a normalizing constant. Therefore one must resort to computationally-intensive inference algorithms in order to construct estimators. These algorithms are typically of Monte Carlo type, and include for example Markov chain Monte Carlo, importance samplers, and sequential Monte Carlo samplers. The multilevel Monte Carlo method provides a way of optimally balancing discretization and sampling error on a hierarchy of approximation levels, such that cost is optimized. Recently this method has been applied to computationally intensive inference. This non-trivial task can be achieved in a variety of ways. This talk will review 3 primary strategies which have been successfully employed to achieve optimal (or canonical) convergence rates – in other words faster convergence than i.i.d. sampling at the finest discretization level. Some of the specific resulting algorithms, and applications, will also be presented.

Thu, 17 Jan 2019

16:00 - 17:30
L3

Light scattering by atmospheric ice crystals - a hybrid numerical-asymptotic approach

Dr. David Hewett
(University College London)
Abstract

Accurate simulation of electromagnetic scattering by ice crystals in clouds is an important problem in atmospheric physics, with single scattering results feeding directly into the radiative transfer models used to predict long-term climate behaviour. The problem is challenging for numerical simulation methods because the ice crystals in a given cloud can be extremely varied in size and shape, sometimes exhibiting fractal-like geometrical characteristics and sometimes being many hundreds or thousands of wavelengths in diameter. In this talk I will focus on the latter "high-frequency" issue, describing a hybrid numerical-asymptotic boundary element method for the simplified problem of acoustic scattering by penetrable convex polygons, where high frequency asymptotic information is used to build a numerical approximation space capable of achieving fixed accuracy of approximation with frequency-independent computational cost. 

Mon, 12 Nov 2018
12:45
L3

Tensionless Strings and Quantum Gravity Conjectures

Seung-Joo Lee
(Cern)
Abstract

We test various conjectures on quantum gravity for general 6d string compactifications in the framework of F-theory. Starting with a gauge theory coupled to gravity, we first analyze the limit in Kähler moduli space where the gauge coupling tends to zero while gravity is kept dynamical. A key observation is made about the appearance of a tensionless string in such a limit. For a more quantitative analysis, we focus on a U(1) gauge symmetry and determine the elliptic genus of this string in terms of certain meromorphic weak Jacobi forms, of which modular properties allow us to determine the charge-to-mass ratios of certain string excitations. A tower of these asymptotically massless charged states are then confirmed to satisfy the (sub-)Lattice Weak Gravity Conjecture, the Completeness Conjecture, and the Swampland Distance Conjecture. If time permits, we interpret their charge-to-mass ratios in two a priori independent perspectives. All of this is then generalized to theories with multiple U(1)s.

Mon, 05 Nov 2018
12:45
L3

Twisted BRST quantization and localization in supergravity

Sameer Murthy
(KCL)
Abstract

Supersymmetric localization is a powerful technique to evaluate a class of functional integrals in supersymmetric field theories. It reduces the functional integral over field space to ordinary integrals over the space of solutions of the off-shell BPS equations. The application of this technique to supergravity suffers from some problems, both conceptual and practical. I will discuss one of the main conceptual problems, namely how to construct the fermionic symmetry with which to localize. I will show how a deformation of the BRST technique allows us to do this. As an application I will then sketch a computation of the one-loop determinant of the super-graviton that enters the localization formula for BPS black hole entropy.
 

Mon, 29 Oct 2018
12:45
L3

Infrared enhancement of supersymmetry in four dimensions

Simone Giacomelli
(Oxford)
Abstract

 In this seminar I will discuss a recently-found class of RG flows in four dimensions exhibiting enhancement of supersymmetry in the infrared, which provides a lagrangian description of several strongly-coupled N=2 SCFTs. The procedure involves starting from a N=2 SCFT, coupling a chiral multiplet in the adjoint representation of the global symmetry to the moment map of the SCFT and turning on a nilpotent expectation value for this chiral. We show that, combining considerations based on 't Hooft anomaly matching and basic results about the N=2 superconformal algebra, it is possible to understand in detail the mechanism underlying this phenomenon and formulate a simple criterion for supersymmetry enhancement. 

Subscribe to L3