Tue, 14 May 2019

14:00 - 14:30
L3

Fast Graph Sampling using Gershgorin Disc Alignment

Gene Cheung
(York University)
Abstract

Graph sampling with noise is a fundamental problem in graph signal processing (GSP). A popular biased scheme using graph Laplacian regularization (GLR) solves a system of linear equations for its reconstruction. Assuming this GLR-based reconstruction scheme, we propose a fast sampling strategy to maximize the numerical stability of the linear system--i.e., minimize the condition number of the coefficient matrix. Specifically, we maximize the eigenvalue lower bounds of the matrix that are left-ends of Gershgorin discs of the coefficient matrix, without eigen-decomposition. We propose an iterative algorithm to traverse the graph nodes via Breadth First Search (BFS) and align the left-ends of all corresponding Gershgorin discs at lower-bound threshold T using two basic operations: disc shifting and scaling. We then perform binary search to maximize T given a sample budget K. Experiments on real graph data show that the proposed algorithm can effectively promote large eigenvalue lower bounds, and the reconstruction MSE is the same or smaller than existing sampling methods for different budget K at much lower complexity.

Tue, 30 Apr 2019

14:00 - 14:30
L3

Computable upper error bounds for Krylov subspace approximations to matrix exponentials

Tobias Jawecki
(TU Wien)
Abstract

A defect-based a posteriori error estimate for Krylov subspace approximations to the matrix exponential is introduced. This error estimate constitutes an upper norm bound on the error and can be computed during the construction of the Krylov subspace with nearly no computational effort. The matrix exponential function itself can be understood as a time propagation with restarts. In practice, we are interested in finding time steps for which the error of the Krylov subspace approximation is smaller than a given tolerance. Finding correct time steps is a simple task with our error estimate. Apart from step size control, the upper error bound can be used on the fly to test if the dimension of the Krylov subspace is already sufficiently large to solve the problem in a single time step with the required accuracy.

Thu, 17 Oct 2019

15:30 - 17:00
L3

Nitric oxide in the exhaled air: a messenger from the deepest parts of the lungs. Mathematical modeling of its transport for a better management of pulmonary diseases (cystic fibrosis, asthma, …)

Benoit Haut
(Université libre de Bruxelles (ULB))
Abstract

During this seminar, we will present a new mathematical model describing the transport of nitric oxide (NO) in a realistic geometrical representation of the lungs. Nitric oxide (NO) is naturally produced in the bronchial region of the lungs. It is a physiological molecule that has antimicrobial properties and allows the relaxation of muscles. It is well known that the measurement of the molar fraction of NO in the exhaled air, the so-called FeNO, allows a monitoring of asthmatic patients, since the production of this molecule in the lungs is increased in case of inflammation. However, recent clinical studies have shown that the amount of NO in the exhaled air can also be affected by « non-inflammatory » processes, such as the action of a bronchodilator or a respiratory physiotherapy session for a patient with cystic fibrosis. Using our new model, we will highlight the complex interplay between different transport phenomena in the lungs. More specifically, we will show why changes taking place in the deepest part of the lungs are expected to impact the FeNO. This gives a new light on the clinical studies mentioned below, allowing to confer a new role to the NO for the management of various pulmonary pathologies.

Fri, 31 May 2019

10:00 - 11:00
L3

An optimal control approach to Formula 1 lap simulation

Mike Beeson, Matt Davidson and James Rogers
(Racing Point F1)
Abstract

In Formula 1 engineers strive to produce the fastest car possible for their drivers. A lap simulation provides an objective evaluation of the performance of the car and the subsequent lap time achieved. Using this information, engineers aim to test new car concepts, determine performance limitations or compromises, and identify the sensitivity of performance to car setup parameters.

The latest state of the art lap simulation techniques use optimal control approaches. Optimisation methods are employed to derive the optimal control inputs of the car that achieve the fastest lap time within the constraints of the system. The resulting state trajectories define the complete behaviour of the car. Such approaches aim to create more robust, realistic and powerful simulation output compared to traditional methods.

In this talk we discuss our latest work in this area. A dynamic vehicle model is used within a free-trajectory solver based on direct optimal control methods. We discuss the reasons behind our design choices, our progress to date, and the issues we have faced during development. Further, we look at the short and long term aims of our project and how we wish to develop our mathematical methods in the future.

Mon, 17 Jun 2019

15:45 - 16:45
L3

Mathematical and computational challenges in interdisciplinary bioscience: efficient approaches for stochastic models of biological processes.

RUTH BAKER
(University of Oxford)
Abstract

Simple mathematical models have had remarkable successes in biology, framing how we understand a host of mechanisms and processes. However, with the advent of a host of new experimental technologies, the last ten years has seen an explosion in the amount and types of data now being generated. Increasingly larger and more complicated processes are now being explored, including large signalling or gene regulatory networks, and the development, dynamics and disease of entire cells and tissues. As such, the mechanistic, mathematical models developed to interrogate these processes are also necessarily growing in size and complexity. These detailed models have the potential to provide vital insights where data alone cannot, but to achieve this goal requires meeting significant mathematical challenges. In this talk, I will outline some of these challenges, and recent steps we have taken in addressing them.

Mon, 17 Jun 2019

14:15 - 15:15
L3

Path Developments and Tail Asymptotics of Signature

XI GENG
(University of Melbourne)
Abstract

It is well known that a rough path is uniquely determined by its signature (the collection of global iterated path integrals) up to tree-like pieces. However, the proof the uniqueness theorem is non-constructive and does not give us information about how quantitative properties of the path can be explicitly recovered from its signature. In this talk, we examine the quantitative relationship between the local p-variation of a rough path and the tail asymptotics of its signature for the simplest type of rough paths ("line segments"). What lies at the core of the work a novel technique based on the representation theory of complex semisimple Lie algebras. 

This talk is based on joint work with Horatio Boedihardjo and Nikolaos Souris

Mon, 10 Jun 2019

15:45 - 16:45
L3

Towards Geometric Integration of Rough Differential Forms

DARIO TREVISAN
(University of Pisa Italy)
Abstract

We discuss some results on integration of ``rough differential forms'', which are generalizations of classical (smooth) differential forms to similar objects involving Hölder continuous functions that may be nowhere differentiable. Motivations arise mainly from geometric problems related to irregular surfaces, and the techniques are naturally related to those of Rough Paths theory. We show in particular that such a geometric integration can be constructed substituting appropriately differentials with more general asymptotic expansions (of Stratonovich or Ito type) and by summing over a refining sequence of partitions, leading to a two-dimensional extension of the classical Young integral, that coincides with the integral introduced recently by R. Züst. We further show that Stratonovich sums gives an advantage allowing to weaken the requirements on Hölder exponents, and discuss some work in progress in the stochastic case. Based on joint works with E. Stepanov, G. Alberti and I. Ballieul.

 

Mon, 10 Jun 2019

14:15 - 15:15
L3

Gibbs measures of nonlinear Schrodinger equations as limits of many-body quantum states

VEDRAN SOHINGER
(University of Warwick)
Abstract

Gibbs measures of nonlinear Schrödinger equations are a fundamental object used to study low-regularity solutions with random initial data. In the dispersive PDE community, this point of view was pioneered by Bourgain in the 1990s. We study the problem of the derivation of Gibbs measures as high-temperature limits of thermal states in many-body quantum mechanics.

In our work, we apply a perturbative expansion in the interaction. This expansion is then analysed by means of Borel resummation techniques. In two and three dimensions, we need to apply a Wick-ordering renormalisation procedure. Moreover, in one dimension, our methods allow us to obtain a microscopic derivation of the time-dependent correlation functions for the cubic nonlinear Schrödinger equation. This is based partly on joint work with Jürg Fröhlich, Antti Knowles, and Benjamin Schlein.

Mon, 20 May 2019

14:15 - 15:15
L3

The renormalized wave equation in 3d with quadratic nonlinearity and additive white noise

HERBERT KOCH
(University of Bonn)
Abstract

Using ideas from paracontrolled calculus, we prove local well-posedness of a renormalized version of the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity forced by an additive space-time white noise on a periodic domain. There are two new ingredients as compared to the parabolic setting. (i) In constructing stochastic objects, we have to carefully exploit dispersion at a multilinear level. (ii) We introduce novel random operators and leverage their regularity to overcome the lack of smoothing of usual paradifferential commutators

Subscribe to L3