Thu, 17 Jan 2019

16:00 - 17:30
L3

Light scattering by atmospheric ice crystals - a hybrid numerical-asymptotic approach

Dr. David Hewett
(University College London)
Abstract

Accurate simulation of electromagnetic scattering by ice crystals in clouds is an important problem in atmospheric physics, with single scattering results feeding directly into the radiative transfer models used to predict long-term climate behaviour. The problem is challenging for numerical simulation methods because the ice crystals in a given cloud can be extremely varied in size and shape, sometimes exhibiting fractal-like geometrical characteristics and sometimes being many hundreds or thousands of wavelengths in diameter. In this talk I will focus on the latter "high-frequency" issue, describing a hybrid numerical-asymptotic boundary element method for the simplified problem of acoustic scattering by penetrable convex polygons, where high frequency asymptotic information is used to build a numerical approximation space capable of achieving fixed accuracy of approximation with frequency-independent computational cost. 

Mon, 12 Nov 2018
12:45
L3

Tensionless Strings and Quantum Gravity Conjectures

Seung-Joo Lee
(Cern)
Abstract

We test various conjectures on quantum gravity for general 6d string compactifications in the framework of F-theory. Starting with a gauge theory coupled to gravity, we first analyze the limit in Kähler moduli space where the gauge coupling tends to zero while gravity is kept dynamical. A key observation is made about the appearance of a tensionless string in such a limit. For a more quantitative analysis, we focus on a U(1) gauge symmetry and determine the elliptic genus of this string in terms of certain meromorphic weak Jacobi forms, of which modular properties allow us to determine the charge-to-mass ratios of certain string excitations. A tower of these asymptotically massless charged states are then confirmed to satisfy the (sub-)Lattice Weak Gravity Conjecture, the Completeness Conjecture, and the Swampland Distance Conjecture. If time permits, we interpret their charge-to-mass ratios in two a priori independent perspectives. All of this is then generalized to theories with multiple U(1)s.

Mon, 05 Nov 2018
12:45
L3

Twisted BRST quantization and localization in supergravity

Sameer Murthy
(KCL)
Abstract

Supersymmetric localization is a powerful technique to evaluate a class of functional integrals in supersymmetric field theories. It reduces the functional integral over field space to ordinary integrals over the space of solutions of the off-shell BPS equations. The application of this technique to supergravity suffers from some problems, both conceptual and practical. I will discuss one of the main conceptual problems, namely how to construct the fermionic symmetry with which to localize. I will show how a deformation of the BRST technique allows us to do this. As an application I will then sketch a computation of the one-loop determinant of the super-graviton that enters the localization formula for BPS black hole entropy.
 

Mon, 29 Oct 2018
12:45
L3

Infrared enhancement of supersymmetry in four dimensions

Simone Giacomelli
(Oxford)
Abstract

 In this seminar I will discuss a recently-found class of RG flows in four dimensions exhibiting enhancement of supersymmetry in the infrared, which provides a lagrangian description of several strongly-coupled N=2 SCFTs. The procedure involves starting from a N=2 SCFT, coupling a chiral multiplet in the adjoint representation of the global symmetry to the moment map of the SCFT and turning on a nilpotent expectation value for this chiral. We show that, combining considerations based on 't Hooft anomaly matching and basic results about the N=2 superconformal algebra, it is possible to understand in detail the mechanism underlying this phenomenon and formulate a simple criterion for supersymmetry enhancement. 

Mon, 22 Oct 2018
12:45
L3

Higgs bundles, branes, and application

Laura Schaposnik
(Chicago)
Abstract

Higgs bundles are pairs of holomorphic vector bundles and holomorphic 1-forms taking values in the endomorphisms of the bundle. Their moduli spaces carry a natural Hyperkahler structure, through which one can study Lagrangian subspaces (A-branes) or holomorphic subspaces (B-branes). Notably, these A and B-branes have gained significant attention in string theory. After introducing Higgs bundles and the associated Hitchin fibration, we shall look at  natural constructions of families of different types of branes, and relate these spaces to the study of 3-manifolds, surface group representations and mirror symmetry.

Thu, 07 Feb 2019

16:00 - 17:30
L3

Fracture dynamics in foam: Finite-size effects

Dr. Peter Stewart
(University of Glasgow)
Abstract

Injection of a gas into a gas/liquid foam is known to give rise to instability phenomena on a variety of time and length scales. Macroscopically, one observes a propagating gas-filled structure that can display properties of liquid finger propagation as well as of fracture in solids. Using a discrete model, which incorporates the underlying film instability as well as viscous resistance from the moving liquid structures, we describe brittle cleavage phenomena in line with experimental observations. We find that  the dimensions of the foam sample significantly affect the speed of the  cracks as well as the pressure necessary to sustain them: cracks in wider samples travel faster at a given driving stress, but are able to avoid arrest and maintain propagation at a lower pressure (the  velocity gap becomes smaller). The system thus becomes a study case for stress concentration and the transition between discrete and continuum systems in dynamical fracture; taking into account the finite dimensions of the system improves agreement with experiment.

Subscribe to L3