Thu, 15 Nov 2018

16:00 - 17:30
L3

Self-similarity in boundary layers

Bruno Eckhardt
(Philipps-Universität Marburg)
Abstract

Boundary layers control the transport of momentum, heat, solutes and other quantities between walls and the bulk of a flow. The Prandtl-Blasius boundary layer was the first quantitative example of a flow profile near a wall and could be derived by an asymptotic expansion of the Navier-Stokes equation. For higher flow speeds we have scaling arguments and models, but no derivation from the Navier-Stokes equation. The analysis of exact coherent structures in plane Couette flow reveals ingredients of such a more rigorous description of boundary layers. I will describe how exact coherent structures can be scaled to obtain self-similar structures on ever smaller scales as the Reynolds number increases.

A quasilinear approximation allows to combine the structures self-consistently to form boundary layers. Going beyond the quasilinear approximation will then open up new approaches for controlling and manipulating boundary layers.

Wed, 04 Jul 2018

14:30 - 15:30
L3

A^1 contractible varieties

Paul Arne Østvær
(Oslo)
Abstract

Motivic homotopy theory gives a way of viewing algebraic varieties and topological spaces as objects in the same category, where homotopies are parametrised  by the affine line.  In particular, there is a notion of $\mathbb A^1$ contractible varieties.  Affine spaces are $\mathbb A^1$ contractible by definition.  The Koras-Russell threefold KR defined by the equation $x + x^2y + z^2 + t^3 = 0$ in $\mathbb A^4$ is the first nontrivial example of an $\mathbb A^1$ contractible smooth affine variety.  We will discuss this example in some detail, and speculate on whether one can use motivic homotopy theory to distinguish between KR and $\mathbb A^3$.

Tue, 24 Apr 2018

14:00 - 14:30
L3

Block preconditioners for non-isothermal flow through porous media

Thomas Roy
(Oxford)
Abstract

In oil and gas reservoir simulation, standard preconditioners involve solving a restricted pressure system with AMG. Initially designed for isothermal models, this approach is often used in the thermal case. However, it does not incorporate heat diffusion or the effects of temperature changes on fluid flow through viscosity and density. We seek to develop preconditioners which consider this cross-coupling between pressure and temperature. In order to study the effects of both pressure and temperature on fluid and heat flow, we first consider a model of non-isothermal single phase flow through porous media. By focusing on single phase flow, we are able to isolate the properties of the pressure-temperature subsystem. We present a numerical comparison of different preconditioning approaches including block preconditioners.

Mon, 30 Apr 2018
12:45
L3

Algebraic systems biology: comparing models and data.

Heather Harrington
(Oxford)
Abstract

I will overview my research for a general math audience.

 First I will present the biological questions and motivate why systems biology needs computational algebraic biology and topological data analysis. Then I will present the mathematical methods I've developed to study these biological systems. Throughout I will provide examples.

 
 
Mon, 28 May 2018
12:45
L3

Modular properties of supersttring scattering amplitudes,

Michael Green
(Cambridge and QMUL)
Abstract

The coefficients of the low energy expansion of closed string amplitudes transform as automorphic functions under En(Z) U-duality groups.
 The seminar will give an overview of some features of the coefficients of low order terms in this expansion, which involve a fascinating interplay between multiple zeta values and certain elliptic and hyperelliptic generalisations, Langlands Eisenstein series for the En groups, and the ultraviolet behaviour of maximally supersymmetric supergravity. 

 
Mon, 07 May 2018
12:45
L3

A Ringel-Hall type construction of vertex algebras

Dominic Joyce
(Oxford)
Abstract



 Suppose A is a nice abelian category (such as coherent sheaves coh(X) on a smooth complex projective variety X, or representations mod-CQ of a quiver Q) or T is a nice triangulated category (such as D^bcoh(X) or D^bmod-CQ) over C. Let M be the moduli stack of objects in A or T. Consider the homology H_*(M) over some ring R.
  Given a little extra data on M, for which there are natural choices in our examples, I will explain how to define the structure of a graded vertex algebra on H_*(M). By a standard construction, one can then define a graded Lie algebra from the vertex algebra; roughly speaking, this is a Lie algebra structure on the homology H_*(M^{pl}) of a "projective linear” version M^{pl} of the moduli stack M.
  For example, if we take T = D^bmod-CQ, the vertex algebra H_*(M) is the lattice vertex algebra attached to the dimension vector lattice Z^{Q_0} of Q with the symmetrized intersection form. The degree zero part of the graded Lie algebra contains the associated Kac-Moody algebra.
  The construction appears to be new, but is connected with a lot of work in Geometric Representation Theory, to do with Ringel-Hall-type algebras and their representations, such as the results of Grojnowski-Nakajima on Hilbert schemes. The vertex algebra construction is enormously general, and applies in huge classes of examples. There is a differential-geometric version too.
  The question I am hoping someone in the audience will answer is this: what is the physical interpretation of these vertex algebras?
  It is in some sense an "even Calabi-Yau” construction: when applied to coh(X) or D^bcoh(X), it is most natural for X a Calabi-Yau 2-fold or Calabi-Yau 4-fold, and is essentially trivial for X a Calabi-Yau 3-fold. I discovered it when I was investigating wall-crossing for Donaldson-Thomas type invariants for Calabi-Yau 4-folds. So perhaps one should look for an explanation in the physics of Calabi-Yau 2-folds or 4-folds, with M the moduli space of boundary conditions for the associated SCFT.

 
 
Mon, 23 Apr 2018
12:45
L3

Duality and Generalised Duality

Matthew Buican
(QMUL)
Abstract

I will review the concept of duality in quantum systems from the 2D Ising model to superconformal field theories in higher dimensions. Using some of these latter theories, I will explain how a generalized concept of duality emerges: these are dualities not between full theories but between algebraically well-defined sub-sectors of strikingly different theories.

 
Tue, 24 Apr 2018

14:30 - 15:00
L3

Randomized algorithms for computing full, rank-revealing factorizations

Abinand Gopal
(Oxford)
Abstract

Over the past decade, the randomized singular value decomposition (RSVD) algorithm has proven to be an efficient, reliable alternative to classical algorithms for computing low-rank approximations in a number of applications. However, in cases where no information is available on the singular value decay of the data matrix or the data matrix is known to be close to full-rank, the RSVD is ineffective. In recent years, there has been great interest in randomized algorithms for computing full factorizations that excel in this regime.  In this talk, we will give a brief overview of some key ideas in randomized numerical linear algebra and introduce a new randomized algorithm for computing a full, rank-revealing URV factorization.

Subscribe to L3