Mon, 14 May 2018
12:45
L3

Trace Anomalies and Boundary Conformal Field Theory

Chris Herzog
(Kings College London)
Abstract



The central charges “c” and “a” in two and four dimensional conformal field theories (CFTs) have a central organizing role in our understanding of quantum field theory (QFT) more generally.  Appearing as coefficients of curvature invariants in the anomalous trace of the stress tensor, they constrain the possible relationships between QFTs under renormalization group flow.  They provide important checks for dualities between different CFTs.  They even have an important connection to a measure of quantum entanglement, the entanglement entropy.  Less well known is that additional central charges appear when there is a boundary, four new coefficients in total in three and four dimensional boundary CFTs.   While largely unstudied, these boundary charges hold out the tantalizing possibility of being as important in the classification of quantum field theory as the bulk central charges “a” and “c”.   I will show how these charges can be computed from displacement operator correlation functions.  I will also demonstrate a boundary conformal field theory in four dimensions with an exactly marginal coupling where these boundary charges depend on the marginal coupling.  The talk is based on arXiv:1707.06224, arXiv:1709.07431, as well as work to appear shortly.  

 
Thu, 15 Nov 2018

16:00 - 17:30
L3

Self-similarity in boundary layers

Bruno Eckhardt
(Philipps-Universität Marburg)
Abstract

Boundary layers control the transport of momentum, heat, solutes and other quantities between walls and the bulk of a flow. The Prandtl-Blasius boundary layer was the first quantitative example of a flow profile near a wall and could be derived by an asymptotic expansion of the Navier-Stokes equation. For higher flow speeds we have scaling arguments and models, but no derivation from the Navier-Stokes equation. The analysis of exact coherent structures in plane Couette flow reveals ingredients of such a more rigorous description of boundary layers. I will describe how exact coherent structures can be scaled to obtain self-similar structures on ever smaller scales as the Reynolds number increases.

A quasilinear approximation allows to combine the structures self-consistently to form boundary layers. Going beyond the quasilinear approximation will then open up new approaches for controlling and manipulating boundary layers.

Wed, 04 Jul 2018

14:30 - 15:30
L3

A^1 contractible varieties

Paul Arne Østvær
(Oslo)
Abstract

Motivic homotopy theory gives a way of viewing algebraic varieties and topological spaces as objects in the same category, where homotopies are parametrised  by the affine line.  In particular, there is a notion of $\mathbb A^1$ contractible varieties.  Affine spaces are $\mathbb A^1$ contractible by definition.  The Koras-Russell threefold KR defined by the equation $x + x^2y + z^2 + t^3 = 0$ in $\mathbb A^4$ is the first nontrivial example of an $\mathbb A^1$ contractible smooth affine variety.  We will discuss this example in some detail, and speculate on whether one can use motivic homotopy theory to distinguish between KR and $\mathbb A^3$.

Tue, 24 Apr 2018

14:00 - 14:30
L3

Block preconditioners for non-isothermal flow through porous media

Thomas Roy
(Oxford)
Abstract

In oil and gas reservoir simulation, standard preconditioners involve solving a restricted pressure system with AMG. Initially designed for isothermal models, this approach is often used in the thermal case. However, it does not incorporate heat diffusion or the effects of temperature changes on fluid flow through viscosity and density. We seek to develop preconditioners which consider this cross-coupling between pressure and temperature. In order to study the effects of both pressure and temperature on fluid and heat flow, we first consider a model of non-isothermal single phase flow through porous media. By focusing on single phase flow, we are able to isolate the properties of the pressure-temperature subsystem. We present a numerical comparison of different preconditioning approaches including block preconditioners.

Subscribe to L3