Mon, 30 Apr 2018
12:45
L3

Algebraic systems biology: comparing models and data.

Heather Harrington
(Oxford)
Abstract

I will overview my research for a general math audience.

 First I will present the biological questions and motivate why systems biology needs computational algebraic biology and topological data analysis. Then I will present the mathematical methods I've developed to study these biological systems. Throughout I will provide examples.

 
 
Mon, 28 May 2018
12:45
L3

Modular properties of supersttring scattering amplitudes,

Michael Green
(Cambridge and QMUL)
Abstract

The coefficients of the low energy expansion of closed string amplitudes transform as automorphic functions under En(Z) U-duality groups.
 The seminar will give an overview of some features of the coefficients of low order terms in this expansion, which involve a fascinating interplay between multiple zeta values and certain elliptic and hyperelliptic generalisations, Langlands Eisenstein series for the En groups, and the ultraviolet behaviour of maximally supersymmetric supergravity. 

 
Mon, 07 May 2018
12:45
L3

A Ringel-Hall type construction of vertex algebras

Dominic Joyce
(Oxford)
Abstract



 Suppose A is a nice abelian category (such as coherent sheaves coh(X) on a smooth complex projective variety X, or representations mod-CQ of a quiver Q) or T is a nice triangulated category (such as D^bcoh(X) or D^bmod-CQ) over C. Let M be the moduli stack of objects in A or T. Consider the homology H_*(M) over some ring R.
  Given a little extra data on M, for which there are natural choices in our examples, I will explain how to define the structure of a graded vertex algebra on H_*(M). By a standard construction, one can then define a graded Lie algebra from the vertex algebra; roughly speaking, this is a Lie algebra structure on the homology H_*(M^{pl}) of a "projective linear” version M^{pl} of the moduli stack M.
  For example, if we take T = D^bmod-CQ, the vertex algebra H_*(M) is the lattice vertex algebra attached to the dimension vector lattice Z^{Q_0} of Q with the symmetrized intersection form. The degree zero part of the graded Lie algebra contains the associated Kac-Moody algebra.
  The construction appears to be new, but is connected with a lot of work in Geometric Representation Theory, to do with Ringel-Hall-type algebras and their representations, such as the results of Grojnowski-Nakajima on Hilbert schemes. The vertex algebra construction is enormously general, and applies in huge classes of examples. There is a differential-geometric version too.
  The question I am hoping someone in the audience will answer is this: what is the physical interpretation of these vertex algebras?
  It is in some sense an "even Calabi-Yau” construction: when applied to coh(X) or D^bcoh(X), it is most natural for X a Calabi-Yau 2-fold or Calabi-Yau 4-fold, and is essentially trivial for X a Calabi-Yau 3-fold. I discovered it when I was investigating wall-crossing for Donaldson-Thomas type invariants for Calabi-Yau 4-folds. So perhaps one should look for an explanation in the physics of Calabi-Yau 2-folds or 4-folds, with M the moduli space of boundary conditions for the associated SCFT.

 
 
Mon, 23 Apr 2018
12:45
L3

Duality and Generalised Duality

Matthew Buican
(QMUL)
Abstract

I will review the concept of duality in quantum systems from the 2D Ising model to superconformal field theories in higher dimensions. Using some of these latter theories, I will explain how a generalized concept of duality emerges: these are dualities not between full theories but between algebraically well-defined sub-sectors of strikingly different theories.

 
Tue, 24 Apr 2018

14:30 - 15:00
L3

Randomized algorithms for computing full, rank-revealing factorizations

Abinand Gopal
(Oxford)
Abstract

Over the past decade, the randomized singular value decomposition (RSVD) algorithm has proven to be an efficient, reliable alternative to classical algorithms for computing low-rank approximations in a number of applications. However, in cases where no information is available on the singular value decay of the data matrix or the data matrix is known to be close to full-rank, the RSVD is ineffective. In recent years, there has been great interest in randomized algorithms for computing full factorizations that excel in this regime.  In this talk, we will give a brief overview of some key ideas in randomized numerical linear algebra and introduce a new randomized algorithm for computing a full, rank-revealing URV factorization.

Thu, 01 Nov 2018

16:00 - 17:30
L3

Ion migration in perovskite solar cells

Jamie Foster
(University of Portsmouth)
Abstract

J. M. Foster 1 , N. E. Courtier 2 , S. E. J. O’Kane 3 , J. M. Cave 3 , R. Niemann 4 , N. Phung 5 , A. Abate 5 , P. J. Cameron 4 , A. B. Walker 3 & G. Richardson 2 .

 

1 School of Mathematics & Physics, University of Portsmouth, UK. {@email}

2 School of Mathematics, University of Southampton, UK.

3 School of Physics, University of Bath, UK.

4 School of Chemistry, University of Bath, UK.

5 Helmholtz-Zentrum Berlin, Germany.

 

Metal halide perovskite has emerged as a highly promising photovoltaic material. Perovskite-based solar cells now exhibit power conversion efficiencies exceeding 22%; higher than that of market-leading multi-crystalline silicon, and comparable to the Shockley-Queisser limit of around 33% (the maximum obtainable efficiency for a single junction solar cell). In addition to fast electronic phenomena, occurring on timescales of nanoseconds, they also exhibit much slower dynamics on the timescales of several seconds and up to a day. One well-documented example of this is the ‘anomalous’ hysteresis observed in current-voltage scans where the applied voltage is varied whilst the output current is measured. There is now a consensus that this is caused by the motion of ions in the perovskite material affecting the internal electric field and in turn the electronic transport.

We will discuss the formulation of a drift-diffusion model for the coupled electronic and ionic transport in a perovskite solar cell as well as its systematic simplification via the method of matched asymptotic expansions. We will use the resulting reduced model to give a cogent explanation for some experimental observations including, (i) the apparent disappearance of current-voltage hysteresis for certain device architectures, and (ii) the slow fading of performance under illumination during the day and subsequent recovery in the dark overnight. Finally, we suggest ways in which materials and geometry can be chosen to reduce charge carrier recombination and improve device performance.

Thu, 25 Oct 2018

16:00 - 17:30
L3

Self-similar structure of caustics and shock formation

Jens Eggers
(University of Bristol)
Abstract

Caustics are places where the light intensity diverges, and where the wave front has a singularity. We use a self-similar description to derive the detailed spatial structure of a cusp singularity, from where caustic lines originate. We also study singularities of higher order, which have their own, uniquely three-dimensional structure. We use this insight to study shock formation in classical compressible Euler dynamics. The spatial structure of these shocks is that of a caustic, and is described by the same similarity equation.

Thu, 18 Oct 2018

16:00 - 17:30
L3

Periodic and localized structures in thin elastic plates

Fabian Brau
(Université libre de Bruxelles (ULB))
Abstract

Many types of patterns emerging spontaneously can be observed in systems involving thin elastic plates and subjected to external or internal stresses (compression, differential growth, shearing, tearing, etc.). These mechanical systems can sometime be seen as model systems for more complex natural systems and allow to study in detail elementary emerging patterns. One of the simplest among such systems is a bilayer composed of a thin plate resting on a thick deformable substrate. Upon slight compression, periodic undulations (wrinkles) with a well-defined wavelength emerge at the level of the thin layer. We will show that, as the compression increases, this periodic state is unstable and that a second order transition to a localized state (fold) occurs when the substrate is a dense fluid.

Subscribe to L3