Mon, 12 Feb 2018

15:45 - 16:45
L3

Universality phenomena for random nodal domains.

JURGEN ANGST
(Rennes 1 Universite)
Abstract

The study of the Geometry of random nodal domains has attracted a lot of attention in the recent past, in particular due to their connection with famous conjectures such as Yau's conjecture on the nodal volume of eigenfunctions of the Laplacian on compact manifolds, and Berry's conjecture on the relation between the geometry of the nodal sets associated to these eigenfunctions and the geometry of the nodal sets associated to toric random waves.

At first, the randomness involved in the definition of random nodal domains is often chosen of Gaussian nature. This allows in particular the use of explicit techniques, such as Kac--Rice formula, to derive the asymptotics of many observables of interest (nodal volume, number of connected components, Leray's measure etc.). In this talk, we will raise the question of the universality of these asymptotics, which consists in deciding if the asymptotic properties of random nodal domains do or do not depend on the particular nature of the randomness involved. Among other results, we will establish the local and global universality of the asymptotic volume associated to the set of real zeros of random trigonometric polynomials with high degree.

 

Mon, 29 Jan 2018

14:15 - 15:15
L3

Marsden's Laplacian for Navier-Stokes equations on manifolds.

SHIZAN FANG
(Universite Bourgogne)
Abstract

We shall explain, from variational point of view, why the  Laplaciian operator introduced by Ebin-Marsden using deformations is suitable to describe the fluid motion in a milieu with viscosity.

Mon, 15 Jan 2018

15:45 - 16:45
L3

SDEs, BSDEs and PDEs with distributional coefficients

ELENA ISSOGLIO
(Leeds University)
Abstract

In this talk I will present three families of differential equations (SDEs, BSDEs and PDEs) and their links to each other. The novel fact is that some of the coefficients are generalised functions living in a fractional Sobolev space of negative order. I will discuss the appropriate notion of solution for each type of equation and show existence and uniqueness results. To do so, I will use tools from analysis like semigroup theory, pointwise products, theory of function spaces, as well as classical tools from probability and stochastic analysis. The link between these equations will play a fundamental role, in particular the results on the PDE are used to give a meaning and solve both the forward and the backward stochastic differential equations.  

Mon, 15 Jan 2018

14:15 - 15:15
L3

Iterated Integrals of stochastic processes

HORATIO BOEDIHARDJO
(University of Reading)
Abstract

Stochastic differential equations have Taylor expansions in terms of iterated Wiener integrals. The convergence of such expansion depends on the limiting behavior of the order-N iterated integrals as N tends to infinity. Recently, there has been increased interests in processes stopped at a random time. A breakthrough in the study of the iterated integrals of Brownian motion up to the exit time of a domain was included in the work of Lyons-Ni (2012). The paper leaves open an interesting question: what is the sharp rate of decay for the expected iterated integrals up to the exit time. We will review the state of the art in this problem and report some recent progress. Joint work with Ni Hao (UCL).

 

Thu, 01 Mar 2018
12:00
L3

Potentials for A-quasiconvexity

Bogdan Raita
(Oxford University)
Abstract

Many problems arising in Physics can be posed as minimisation of energy functionals under linear partial differential constraints. For example, a prototypical example in the Calculus of Variations is given by functionals defined on curl-free fields, i.e., gradients. Most work done subject to more general constraints met significant difficulty due to the lack of associated potentials. We show that under the constant rank assumption, which holds true of almost all examples of constraints investigated in connection with lower-semicontinuity, linear constraints admit a potential in frequency space. As a consequence, the notion of A-quasiconvexity, which involves testing with periodic fields leading to difficulties in establishing sufficiency for weak sequential lower semi-continuity, can be tested against compactly supported fields. We will indicate how this can simplify the general framework.

Subscribe to L3