Mon, 23 Oct 2017

14:15 - 15:15
L3

On some heavy-tail phenomena occurring in large deviations

FANNY AUGERI
(Weizmann Institute Israel)
Abstract

In this talk, we will revisit the proof of the large deviations principle of Wiener chaoses partially given by Borell, and then by Ledoux in its full form. We show that some heavy-tail phenomena observed in large deviations can be explained by the same mechanism as for the Wiener chaoses, meaning that the deviations are created, in a sense, by translations. More precisely, we prove a general large deviations principle for a certain class of functionals $f_n : \mathbb{R}^n \to \mathcal{X}$, where $\mathcal{X}$ is some metric space, under the probability measure $\nu_{\alpha}^n$, where $\nu_{\alpha} =Z_{\alpha}^{-1}e^{-|x|^{\alpha}}dx$, $\alpha \in (0,2]$, for which the large deviations are due to translations. We retrieve, as an application, the large deviations principles known for the so-called Wigner matrices without Gaussian tails of the empirical spectral measure, the largest eigenvalue, and traces of polynomials. We also apply our large deviations result to the last-passage time which yields a large deviations principle when the weight matrix has law $\mu_{\alpha}^{n^2}$, where $\mu_{\alpha}$ is the probability measure on $\mathbb{R}^+$ with density $2Z_{\alpha}^{-1}e^{-x^{\alpha}}$ when $\alpha \in (0,1)$.

 

Mon, 16 Oct 2017

15:45 - 16:45
L3

A signature-based machine learning model for bipolar disorder and borderline personality disorder

IMANOL PEREZ
(University of Oxford)
Abstract

The signature of a path has many properties that make it an excellent feature to be used in machine learning. We exploit this properties to analyse a stream of data that arises from a psychiatric study whose objective is to analyse bipolar and borderline personality disorders. We build a machine learning model based on signatures that tries to answer two clinically relevant questions, based on observations of their reported state over a short period of time: is it possible to predict if a person is healthy, has bipolar disorder or has borderline personality disorder? And given a person or borderline personality disorder, it is possible to predict his or her future mood? Signatures proved to be very effective to tackle these two problems.

Mon, 16 Oct 2017

14:15 - 15:15
L3

On uniqueness and blowup properties for a class of second order SDES

EYAL NEUMAN
(Imperial College London)
Abstract

 

Abstract. As the first  step for approaching the uniqueness and blowup properties of the solutions of the stochastic wave equations with multi-plicative noise, we analyze the conditions for the uniqueness and blowup properties of the solution (Xt; Yt) of the equations dXt = Ytdt, dYt = jXtj_dBt, (X0; Y0) = (x0; y0). In particular, we prove that solutions arenonunique if 0 < _ < 1 and (x0; y0) = (0; 0) and unique if 1=2 < _ and (x0; y0) 6= (0; 0). We also show that blowup in _nite time holds if _ > 1 and (x0; y0) 6= (0; 0).

This is a joint work with A. Gomez, J.J. Lee, C. Mueller and M. Salins.

 

Mon, 09 Oct 2017

14:15 - 15:15
L3

Inverting the signature of a path

JIAWEI CHANG
(University of Oxford)
Abstract

Inverting the signature of a path with ideas from linear algebra with implementations.

Thu, 14 Sep 2017

17:00 - 18:00
L3

Homological stability and meta-stability for mapping class groups

Soren Galatius
(Stanford and Copenhagen)
Abstract

Let \Gamma_{g,1} denote the mapping class group of a genus g surface with one parametrized boundary component.  The group homology H_i(\Gamma_{g,1}) is independent of g, as long as g is large compared to i, by a famous theorem of Harer known as homological stability, now known to hold when 2g > 3i.  Outside that range, the relative homology groups H_i(\Gamma_{g,1},\Gamma_{g-1,1}) contain interesting information about the failure of homological stability.  In this talk, I will discuss a metastability result; the relative groups depend only on the number k = 2g-3i, as long as g is large compared to k.  This is joint work with Alexander Kupers and Oscar Randal-Williams.

Thu, 14 Sep 2017

15:30 - 16:30
L3

The smooth homotopy category

Graeme Segal
(Oxford)
Abstract

The smooth homotopy category is a simultaneous enlargement of the usual homotopy category and of the category of smooth manifolds. Its structure can be described very simply and explicitly by a version of van Est's theorem.  It provides us with an  interpolation between topology and geometry (and with a toy model of derived algebraic geometry and motivic homotopy theory, though I shall not pursue those directions).  My talk will list some situations which the category seems to illuminate: one will be Kapranov's beautiful description of the Lie algebra of the 'group' of based loops in a manifold.
 

Fri, 10 Nov 2017

16:45 - 17:30
L3

Reducing tissue hypoxia for cancer therapy

Professor Eleanor Stride
(Institute of Biomedical Engineering University of Oxford)
Abstract

Hypoxia, i.e. a reduction in dissolved oxygen concentration below physiologically normal levels, has been identified as playing a critical role
in the progression of many types of disease and as a key determinant of the success of cancer treatment. It poses a particular challenge for treatments
such as radiotherapy, photodynamic and sonodynamic therapy which rely on the production of reactive oxygen species. Strategies for treating hypoxia have
included the development of hypoxia-selective drugs as well as methods for directly increasing blood oxygenation, e.g. hyperbaric oxygen therapy, pure
oxygen or carbogen breathing, ozone therapy, hydrogen peroxide injections and administration of suspensions of oxygen carrier liquids. To date, however,
these approaches have delivered limited success either due to lack of proven efficacy and/or unwanted side effects. Gas microbubbles, stabilised by a
biocompatible shell have been used as ultrasound contrast agents for several decades and have also been widely investigated as a means of promoting drug
delivery. This talk will present our recent research on the use of micro and nanobubbles to deliver both drug molecules and oxygen simultaneously to a
tumour to facilitate treatment.

Fri, 10 Nov 2017

16:00 - 16:45
L3

En route to mending broken hearts

Professor Paul Riley
(Dept of Pathology University of Oxford)
Abstract

We adopt the paradigm of understanding how the heart develops during pregnancy as a first principal to inform on adult heart repair and regeneration. Our target for cell-based repair is the epicardium and epicardium-derived cells (EPDCs) which line the outside of the forming heart and contribute vascular endothelial and smooth muscle cells to the coronary vasculature, interstitial fibroblasts and cardiomyocytes. The epicardium can also act as a source of signals to condition the growth of the underlying embryonic heart muscle. In the adult heart, whilst the epicardium is retained, it is effectively quiescent. We have sought to extrapolate the developmental potential of the epicardium to the adult heart following injury by stimulating dormant epicardial cells to give rise to new muscle and vasculature. In parallel, we seek to modulate the local environment into which the new cells emerge: a cytotoxic mixture of inflammation and fibrosis which prevents cell engraftment and integration with survived heart tissue. To this end we manipulate the lymphatic vessels in the heart given that, elsewhere in the body, the lymphatics survey the immune system and modulate inflammation at peripheral injury sites. We recently described the development of the cardiac lymphatic vasculature and revealed in the adult heart that they undergo increased vessel sprouting (lymphangiogenesis) in response to injury, to improve function, remodelling and fibrosis. We are currently investigating whether increased lymphangiogenesis functions to clear immune cells and constrain the reparative response for optimal healing.

Wed, 09 Aug 2017

13:30 - 17:15
L3

Networks: from Matrix Functions to Quantum Physics

Prof. Peter Grindrod CBE
Abstract

This half-day research workshop will address issues at the intersection between network science, matrix theory and mathematical physics.

Network science is producing a wide range of challenging research problems that have diverse applications across science and engineering. It is natural to cast these research challenges in terms of matrix function theory. However, in many cases, closely related problems have been tackled by researchers working in statistical physics, notably quantum mechanics on graphs and quantum chaos. This workshop will discuss recent progress that has been made in both fields and highlight opportunities for cross-fertilization. While focusing on mathematical, physical and computational issues, some results will also be presented for real data sets of relevance to practitioners in network science.

Subscribe to L3