Mon, 10 Oct 2016
12:00
L3

A space of states in Berkovits string theory: a mathematical approach

Michael Movshev
(SUNY at Stony Brook)
Abstract

Pure spinor space, a cone over orthogonal Grassmannian OGr(5,10), is a central concept in the Berkovits formulation of string theory. The space of states of the beta-gamma system on pure spinors is tensor factor in the Hilbert space of string theory . This is why it would be nice to have a good definition of this space of states. This is not a straightforward task because of the conical singularity of the target. In the talk I will explain a strategy for attacking  conical targets. In the case of pure spinors the method gives a formula for partition function of pure spinors.

Thu, 10 Nov 2016

16:00 - 17:00
L3

Ousman Kodio, Edward Rolls

OCIAM Group Meeting
(University of Oxford)
Abstract

Ousman Kodio

Lubricated wrinkles: imposed constraints affect the dynamics of wrinkle coarsening

We investigate the problem of an elastic beam above a thin viscous layer. The beam is subjected to
a fixed end-to-end displacement, which will ultimately cause it to adopt the Euler-buckled
state. However, additional liquid must be drawn in to allow this buckling. In the interim, the beam
forms a wrinkled state with wrinkles coarsening over time. This problem has been studied
experimentally by Vandeparre \textit{et al.~Soft Matter} (2010), who provides a scaling argument
suggesting that the wavelength, $\lambda$, of the wrinkles grows according to $\lambda\sim t^{1/6}$.
However, a more detailed theoretical analysis shows that, in fact, $\lambda\sim(t/\log t)^{1/6}$.
We present numerical results to confirm this and show that this result provides a better account of
previous experiments.

 

Edward Rolls

Multiscale modelling of polymer dynamics: applications to DNA

We are interested in generalising existing polymer dynamics models which are applicable to DNA into multiscale models. We do this by simulating localized regions of a polymer chain with high spatial and temporal resolution, while using a coarser modelling approach to describe the rest of the polymer chain in order to increase computational speeds. The simulation maintains key macroscale properties for the entire polymer. We study the Rouse model, which describes a polymer chain of beads connected by springs by developing a numerical scheme which considers the a filament with varying spring constants as well as different timesteps to advance the positions of different beads, in order to extend the Rouse model to a multiscale model. This is applied directly to a binding model of a protein to a DNA filament. We will also discuss other polymer models and how it might be possible to introduce multiscale modelling to them.

Mon, 24 Oct 2016

15:45 - 16:45
L3

The stochastic heat equation on a fractal

WEIYE YANG
(University of Oxford)
Abstract

It is well-known that the stochastic heat equation on R^n has a Hölder continuous function-valued solution in the case n=1, and that in dimensions 2 and above the solution is not function-valued but is forced to take values in some wider space of distributions. So what happens if the space has, in some sense, a dimension in between 1 and 2? We turn to the theory of fractals in order to answer this question. It has been shown (Kigami, 2001) that there exists a class of self-similar sets on which natural Laplacians can be defined, and so an analogue to the stochastic heat equation can be posed. In this talk we cover the following questions: Is the solution to this equation function-valued? If so, is it Hölder continuous? To answer the latter we must first prove an analogue of Kolmogorov's celebrated continuity theorem for the self-similar sets that we are working on. Joint work with Ben Hambly.

Mon, 24 Oct 2016

14:15 - 15:15
L3

Inverting the signature of a path

WEIJUN XU
(University of Warwick)
Abstract

We give an explicit scheme to reconstruct any C^1 curve from its signature. It is implementable and comes with detailed stability properties. The key of the inversion scheme is the use of a symmetrisation procedure that separates the behaviour of the path at small and large scales. Joint work with Terry Lyons.

Mon, 10 Oct 2016

14:15 - 15:15
L3

Lip^\gamma functions on rough path space.

SINA NEJAD
(University of Oxford)
Abstract

Malliavin calculus provides a framework to differentiate functionals defined on a Gaussian probability space with respect to the underlying noise. This allows to develop analysis on path space with infinite-dimensional generalisations of Fourier analysis, Sobolev spaces, etc from R^d. In this talk, we attempt to build a Lipschitz à la E. M. Stein (as opposed to Sobolev) function theory on rough path space. This framework allows to pathwise differentiate functionals on rough paths with respect to the underlying rough path. Time permitting, we show how to obtain Feynman-Kac-type representations for solutions to some high-order (>2) linear parabolic equations on R^d.

Thu, 03 Nov 2016

16:00 - 17:00
L3

Numerical Analysis meets Topology

Henry Schenck
(University of Illinois)
Abstract

One of the fundamental tools in numerical analysis and PDE
is the finite element method (FEM). A main ingredient in
FEM are splines: piecewise polynomial functions on a
mesh. Even for a fixed mesh in the plane, there are many open
questions about splines: for a triangular mesh T and
smoothness order one, the dimension of the vector space
  C^1_3(T) of splines of polynomial degree at most three
is unknown. In 1973, Gil Strang conjectured a formula
for the dimension of the space C^1_2(T) in terms of the
combinatorics and geometry of the mesh T, and in 1987 Lou
Billera used algebraic topology to prove the conjecture
(and win the Fulkerson prize). I'll describe recent progress
on the study of spline spaces, including a quick and self
contained introduction to some basic but quite useful tools
from topology.

Wed, 01 Mar 2017
15:00
L3

Short addition sequences for theta functions

Andreas Enge
(University of Bordeaux)
Abstract

Classical modular functions and forms may be evaluated numerically using truncations of the q-series of the Dedekind eta-function or of Jacobi theta-constants. We show that the special structure of the exponents occurring in these series makes it possible to evaluate their truncations to N terms with N+o(N) multiplications; the proofs use elementary number theory and sometimes rely on a Bateman-Horn type conjecture. We furthermore obtain a baby-step giant-step algorithm needing only a sublinear number of multiplications, more precisely O (N/log^r N) for any r>0. Both approaches lead to a measurable speed-up in practical precision ranges, and push the cross-over point for the asymptotically faster arithmetic- geometric mean algorithm even further.

(joint work with William Hart and Fredrik Johansson) ​

Mon, 10 Oct 2016

15:45 - 16:45
L3

Small-time fluctuations for sub-Riemannian diffusion loops

KAREN HABERMANN
(University of Cambridge)
Abstract

We study the small-time fluctuations for diffusion processes which are conditioned by their initial and final positions and whose diffusivity has a sub-Riemannian structure. In the case where the endpoints agree, we discuss the convergence of the suitably rescaled fluctuations to a limiting diffusion loop, which is equal in law to the loop we obtain by taking the limiting process of the unconditioned rescaled diffusion processes and condition it to return to its starting point. The generator of the unconditioned limiting rescaled diffusion process can be described in terms of the original generator.

Mon, 14 Nov 2016

15:45 - 16:45
L3

Rough path metrics on a Besov-Nikolskii type scale

DAVID PROEMEL
(ETH Zurich)
Abstract

One of the central results in rough path theory is the local Lipschitz continuity of the solution map of a controlled differential equation called Ito-Lyons map. This continuity statement was obtained by T. Lyons in a q-variation resp. 1/q-Hölder type (rough path) metrics for any regularity 1/q>0. We extend this to a new class of Besov-Nikolskii type metrics with arbitrary regularity 1/q and integrability p, which particularly covers the aforementioned results as special cases. This talk is based on a joint work with Peter K. Friz.

 

Mon, 14 Nov 2016

14:15 - 15:15
L3

Tail index estimation, concentration, adaptation...

STEPHANE BOUCHERON
(Université Paris Diderot)
Abstract

This paper presents an adaptive version of the Hill estimator based on Lespki’s model selection method. This simple data-driven index selection method is shown to satisfy an oracle inequality and is checked to achieve the lower bound recently derived by Carpentier and Kim. In order to establish the oracle inequality, we derive non-asymptotic variance bounds and concentration inequalities for Hill estimators. These concentration inequalities are derived from Talagrand’s concentration inequality for smooth functions of independent exponentially distributed random variables combined with three tools of Extreme Value Theory: the quantile transform, Karamata’s representation of slowly varying functions, and Rényi’s characterisation for the order statistics of exponential samples. The performance of this computationally and conceptually simple method is illustrated using Monte-Carlo simulations.

http://projecteuclid.org/euclid.ejs/1450456321  (joint work with Maud Thomas)

Subscribe to L3