Thu, 13 Oct 2016

16:00 - 17:30
L3

OCIAM Group Meeting

Graham Benham, Nabil Fadai
(University of Oxford)
Abstract

Graham Benham

The Fluid Mechanics of Low-Head Hydropower Illuminated by Particle Image Velocimetry

We study a new type of hydropower which is cost-effective in rivers and tides where there are small pressure drops. The concept goes as follows: The cost of water turbines scales with the flow rate they deal with.  Therefore, in order to render this hydropower desirable, we make use of the Venturi principle, a natural fluid mechanical gear system which involves splitting the flow into two streams. The turbine deals with a small fraction of the flow at slow speed and high pressure, whilst the majority avoids the turbine, going at high speed and low pressure. Now the turbine feels an amplified pressure drop, thus maintaining its power output, whilst becoming much cheaper. But it turns out that the efficiency of the whole system depends strongly on the way in which these streams mix back together again.

Here we discuss some new experimental results and compare them to a simplified mathematical model for the mixing of these streams. The experimental results were achieved using particle image velocimetry (PIV), which is a type of flow visualisation. Using a laser sheet and a high speed camera, we are able to capture flow velocity fields at high resolution. Pressure measurements were also taken. The mathematical model is derived from the Navier Stokes equations using boundary layer theory alongside a flow-averaging method and reduces the problem to solving a set of ODE’s for the bulk components of the flow.

 

Nabil Fadai

Asymptotic Analysis of a Multiphase Drying Model Motivated by Coffee Bean Roasting

Recent modelling of coffee bean roasting suggests that in the early stages of roasting, within each coffee bean, there are two emergent regions: a dried outer region and a saturated interior region. The two regions are separated by a transition layer (or drying front). In this talk, we consider the asymptotic analysis of a multiphase model of this roasting process which was recently put forth and studied numerically, in order to gain a better understanding of its salient features. The model consists of a PDE system governing the thermal, moisture, and gas pressure profiles throughout the interior of the bean. Obtaining asymptotic expansions for these quantities in relevant limits of the physical parameters, we are able to determine the qualitative behaviour of the outer and interior regions, as well as the dynamics of the drying front. Although a number of simplifications and scaling are used, we take care not to discard aspects of the model which are fundamental to the roasting process. Indeed, we find that for all of the asymptotic limits considered, our approximate solutions faithfully reproduce the qualitative features evident from numerical simulations of the full model. From these asymptotic results we have a better qualitative understanding of the drying front (which is hard to resolve precisely in numerical simulations), and hence of the various mechanisms at play as heating, evaporation, and pressure changes result in a roasted bean. This qualitative understanding of solutions to the multiphase model is essential if one is to create more involved models that incorporate chemical reactions and solid mechanics effects.

Tue, 03 May 2016
14:30
L3

Optimal preconditioners for systems defined by functions of Toeplitz matrices

Sean Hon
(University of Oxford)
Abstract

We propose several optimal preconditioners for systems defined by some functions $g$ of Toeplitz matrices $T_n$. In this paper we are interested in solving $g(T_n)x=b$ by the preconditioned conjugate method or the preconditioned minimal residual method, namely in the cases when $g(T_n)$ are the analytic functions $e^{T_n}$, $\sin{T_n}$ and $\cos{T_n}$. Numerical results are given to show the effectiveness of the proposed preconditioners.

Tue, 01 Mar 2016
14:30
L3

Kerdock matrices and the efficient quantization of subsampled measurements

Andrew Thompson
(University of Oxford)
Abstract

Kerdock matrices are an attractive choice as deterministic measurement matrices for compressive sensing. I'll explain how Kerdock matrices are constructed, and then show how they can be adapted to one particular  strategy for quantizing measurements, in which measurements exceeding the desired dynamic range are rejected.

Fri, 26 Feb 2016

13:00 - 14:00
L3

Tunneling in Theories with Many Fields

Sonia Paban
(University of Texas at Austin)
Abstract

The possibility of a landscape of metastable vacua raises the question of what fraction of vacua are truly long lived. Naively any would-be vacuum state has many nearby decay paths, and all possible decays must be suppressed. An interesting model of this phenomena consists of N scalars with a random potential of fourth order. We show that the scaling of the typical minimal bounce action with N is readily understood. We discuss the extension to more realistic landscape models as well as the effects of gravity. 

Tue, 19 Apr 2016

15:45 - 16:45
L3

Cutting and pasting in algebraic geometry

Ravi Vakil
(Stanford)
Abstract

Given some class of "geometric spaces", we can make a ring as follows. Additive structure: when U is an open subset a space X,  [X] = [U] + [X - U]. Multiplicative structure:  [X][Y] = [XxY]. In the algebraic setting, this ring (the "Grothendieck ring of varieties") contains surprising structure, connecting geometry to arithmetic and topology.  I will discuss some remarkable
statements about this ring (both known and conjectural), and present new statements (again, both known and conjectural).  A motivating example will be polynomials in one variable. This is joint work with Melanie Matchett Wood.

Tue, 08 Mar 2016
14:30
L3

Homogenized boundary conditions and resonance effects in Faraday cages

Dave Hewett
(University of Oxford)
Abstract

The Faraday cage effect is the phenomenon whereby electrostatic and electromagnetic fields are shielded by a wire mesh "cage". Nick Trefethen, Jon Chapman and I recently carried out a mathematical analysis of the two-dimensional electrostatic problem with thin circular wires, demonstrating that the shielding effect is not as strong as one might infer from the physics literature. In this talk I will present new results generalising the previous analysis to the electromagnetic case, and to wires of arbitrary shape. The main analytical tool is the asymptotic method of multiple scales, which is used to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. In the electromagnetic case one observes interesting resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. This is joint work with Ian Hewitt.

Thu, 17 Mar 2016

16:00 - 17:00
L3

Pee, Poo, and the Gut

David Hu
(Georgia Tech)
Abstract

Fluids and solids leave our bodies everyday.  How do animals do it, from mice to elephants?  In this talk, I will show how the shape of urinary and digestive organs enable them to function, regardless of the size of the animal.  Such ideas may teach us how to more efficiently transport materials.  I will show how the pee-pee pipe enables animals to urinate in constant time, how slippery mucus is critical for defecation, and how the motion of the gut is related to the density of its contents, and in turn to the gut’s natural frequency. 

More info is in the BBC news here: http://www.bbc.com/news/science-environment-34278595

Subscribe to L3