Fri, 05 Feb 2016

14:00 - 15:00
L3

Qualitative behaviour of stochastic and deterministic models of biochemical reaction networks

Professor David Anderson
(Department of Mathematics Wisconsin University)
Abstract

If the abundances of the constituent molecules of a biochemical reaction system  are sufficiently high then their concentrations are typically modelled by a coupled set of ordinary differential equations (ODEs).  If, however, the abundances are low then the standard deterministic models do not provide a good representation of the behaviour of the system and stochastic models are used.  In this talk, I will first introduce both the stochastic and deterministic models.  I will then provide theorems that allow us to determine the qualitative behaviour of the underlying mathematical models from easily checked properties of the associated reaction network.  I will present results pertaining to so-called ``complex-balanced'' models and those satisfying ``absolute concentration robustness'' (ACR).  In particular, I will show how  ACR models, which are stable when modelled deterministically, necessarily undergo an extinction event in the stochastic setting.  I will then characterise the behaviour of these models prior to extinction.

Thu, 21 Jan 2016

16:00 - 17:00
L3

Group Meeting

Tmoslav Plesa, John Ockendon, Hilary Ockendon
Abstract

Tmoslav Plesa: Chemical Reaction Systems with a Homoclinic Bifurcation: An Inverse Problem, 25+5 min;

John Ockendon: Wave Homogenisation, 10 min + questions; 

Hilary Ockendon: Sloshing, 10 min + questions
 

 

Mon, 18 Jan 2016

16:00 - 17:00
L3

4th moment of quadratic Dirichlet L-functions in function fields

Alexandra Florea
(Stanford University)
Abstract

We discuss moments of $L$-functions in function fields, in the hyperelliptic ensemble, focusing on the fourth moment of quadratic Dirichlet $L$-functions at the critical point. We explain how to obtain an asymptotic formula with some of the secondary main terms.

Subscribe to L3