Mon, 23 Nov 2015

17:00 - 18:00
L3

Functors of points and moduli problems

Alexander Betts
(Oxford University)
Abstract

In algebraic and arithmetic geometry, there is the ubiquitous notion of a moduli space, which informally is a variety (or scheme) parametrising a class of objects of interest. My aim in this talk is to explain concretely what we mean by a moduli space, going through the functor-of-points formalism of Grothendieck. Time permitting, I may also discuss (informally!) a natural obstruction to the existence of moduli schemes, and how one can get around this problem by taking a 2-categorical point of view.

Mon, 16 Nov 2015

12:00 - 13:00
L3

Energy Gaps and Casimir Energies in Holographic CFTs

Andrew Hickling
(Imperial College)
Abstract

Two interesting properties of static curved space QFTs are Casimir Energies, and the Energy Gaps of fluctuations. We investigate what AdS/CFT has to say about these properties by examining holographic CFTs defined on curved but static spatially closed spacetimes. Being holographic, these CFTs have a dual gravitational description under Gauge/Gravity duality, and these properties of the CFT are reflected in the geometry of the dual bulk.  We can turn this on its head and ask, what does the existence of the gravitational bulk dual imply about these properties of the CFTs? In this talk we will consider holographic CFTs where the dual vacuum state is described by pure Einstein gravity with negative cosmological constant.  We will argue using the bulk geometry first, that if the CFT spacetime's spatial scalar curvature is positive there is a lower bound on the gap for scalar fluctuations, controlled by the minimum value of the boundary Ricci scalar. In fact, we will show that it is precisely the same bound as is satisfied by free scalar CFTs, suggesting that this bound might be something that applies more generally than just in a Holographic context. We will then show, in the case of 2+1 dimensional CFTs, that the Casimir energy is non-positive, and is in fact negative unless the CFT's scalar curvature is constant. In this case, there is no restriction on the boundary scalar curvature, and we can even allow singularities in the bulk, so long as they are 'good' singularities. If time permits, we will also describe some new results about the Hawking-Page transition in this context. 

 
 
Mon, 02 Nov 2015
17:00
L3

Non-Archimedean Analytic Geometry..etc.

Nicholas Wentzlaff
Abstract

I want to give an introduction into non-Archimedean Geometry, and show how Model Theory was used to prove the recent results of Hrushovski-Loeser on topological properties of analytic spaces. This may also be of interest with view towards Zilber's programme for syntax-semantics dualities.

Mon, 09 Nov 2015

12:00 - 13:00
L3

Yang-Mills origin of gravitational symmetries

Mike Duff
(Imperial College)
Abstract

By regarding gravity as the convolution of left and right Yang-Mills theories together with a spectator scalar field in the bi-adjoint representation, we derive in linearised approximation the gravitational symmetries of general covariance, p-form gauge invariance, local Lorentz invariance and local supersymmetry from the flat space Yang-Mills symmetries of local gauge invariance and global super-Poincare. As a concrete example we focus on the new-minimal (12+12) off-shell version of simple four-dimensional supergravity obtained by tensoring the off-shell Yang-Mills multiplets (4+4,NL =1)and(3+0,NR =0). 

 
Mon, 23 Nov 2015

12:00 - 13:00
L3

AdS4 solutions of massive IIA from dyonic supergravity and their simple Chern-Simons duals

Oscar Varela
(Harvard)
Abstract

It has been recently pointed out that maximal gauged supergravities in four dimensions often come in one-parameter families. The parameter measures the combination of electric and magnetic vectors that participate in the gauging. I will discuss the higher-dimensional origin of these dyonic gaugings, when the gauge group is chosen to be ISO(7). This gauged supergravity arises from consistent truncation of massive type IIA on the six-sphere, with its dyonically-gauging parameter identified with the Romans mass. The (AdS) vacua of the 4D supergravity give rise to new explicit AdS4 backgrounds of massive type IIA. I will also show that the 3D field theories dual to these AdS4 solutions are Chern-Simons-matter theories with a simple gauge group and level k also given by the Romans mass.

 
Tue, 27 Oct 2015

17:30 - 18:30
L3

Empirical phenomena and universal laws

Professor Peter McCullagh, FRS,
(University of Chicago)
Abstract

In 1943 Fisher, together with Corbet and Williams, published a study on the relation between the number of species and the number of individuals, which has since been recognized as one of the most influential papers in 20th century ecology. It was a combination of empirical work backed up by a simple theoretical argument, which describes a sort of universal law governing random partitions, such as the celebrated Ewens partition whose original derivation flows from the Fisher-Wright model. This talk will discuss several empirical studies of a similar sort, including Taylor's law and recent work related to Fairfield-Smith's work on the variance of spatial averages.

Fri, 04 Dec 2015

14:00 - 15:00
L3

Transmural propagation of the action potential in mammalian hearts: marrying experimental and theoretical studies

Prof Godfrey Smith
(Institute of Cardiovascular & Medical Sciences University of Glasgow)
Abstract

Transmural propagation is a little studied feature of mammalian electrophysiology, this talk reviews our experimental work using different optical techniques to characterise this mode
of conduction under physiological and pathophysiological conditions.

Fri, 27 Nov 2015

14:00 - 15:00
L3

What can we reconstruct about neural organization from time series of electrophysiological recordings?

Dr David Holcman
(IBENS Ecole Normale Superieure)
Abstract

We will discuss how the analysis of a stochastic mean-field model for
synaptic activity can be used to reconstruct some parameters about
neuronal networks.  The method is based on a non-standard analysis of the
Fokker-Planck equation and the asymptotic computation of the spectrum for
the nonself-adjoint operator. Applications concern Up- and Down- states
and bursting activity in neuronal networks.

Subscribe to L3