Mon, 02 Dec 2024
14:15
L4

Open Gromov-Witten invariants and Mirror symmetry

Kai Hugtenburg
(Lancaster)
Abstract

This talk reports on two projects. The first work (in progress), joint  with Amanda Hirschi, constructs (genus 0) open Gromov-Witten invariants for any Lagrangian submanifold using a global Kuranishi chart construction. As an application we show open Gromov-Witten invariants are invariant under Lagrangian cobordisms. I will then describe how open Gromov-Witten invariants fit into mirror symmetry, which brings me to the second project: obtaining open Gromov-Witten invariants from the Fukaya category.

Thu, 06 Feb 2025
16:00
L4

Unramified Langlands: geometric and function-theoretic

Dennis Gaitsgory
(MPI Bonn)
Abstract
I will explain the content of Geometric Langlands (which is a theorem over the ground fields of characteristic 0 but still a conjecture in positive characteristic) and show how it implies a description of the space of automorphic functions in terms of Galois data. The talk will mostly follow a joint paper with Arinkin, Kazhdan, Raskin, Rozenblyum and Varshavsky from 2022.
Mon, 18 Nov 2024
14:15
L4

Gromov-Witten theory in degenerations

Dhruv Ranganathan
(Cambridge)
Abstract

I will discuss recent and ongoing work with Davesh Maulik that explains how Gromov-Witten invariants behave under simple normal crossings degenerations. The main outcome of the study is that if a projective manifold $X$ undergoes a simple normal crossings degeneration, the Gromov-Witten theory of $X$ is determined, via universal formulas, by the Gromov-Witten theory of the strata of the degeneration. Although the proof proceeds via logarithmic geometry, the statement involves only traditional Gromov-Witten cycles. Indeed, one consequence is a folklore conjecture of Abramovich-Wise, that logarithmic Gromov-Witten theory “does not contain new invariants”. I will also discuss applications of this to a conjecture of Levine and Pandharipande, concerning the relationship between Gromov-Witten theory and the cohomology of the moduli space of curves.

Mon, 28 Oct 2024
14:15
L4

On the Geometric Langlands Program

Dario Beraldo
(University College London)
Abstract

I will discuss how some ideas from Geometric Langlands can be used to obtain new results in birational geometry and on the topology of algebraic varieties.

Mon, 21 Oct 2024
14:15
L4

Machine learning detects terminal singularities

Sara Veneziale
(Imperial College London)
Abstract

In this talk, I will describe recent work in the application of machine learning to explore questions in algebraic geometry, specifically in the context of the study of Q-Fano varieties. These are Q-factorial terminal Fano varieties, and they are the key players in the Minimal Model Program. In this work, we ask and answer if machine learning can determine if a toric Fano variety has terminal singularities. We build a high-accuracy neural network that detects this, which has two consequences. Firstly, it inspires the formulation and proof of a new global, combinatorial criterion to determine if a toric variety of Picard rank two has terminal singularities. Secondly, the machine learning model is used directly to give the first sketch of the landscape of Q-Fano varieties in dimension eight. This is joint work with Tom Coates and Al Kasprzyk.

Wed, 06 Nov 2024
11:00
L4

Probabilistic Schwarzian Field Theory

Ilya Losev
(Cambridge University)
Abstract

Schwarzian Theory is a quantum field theory which has attracted a lot of attention in the physics literature in the context of two-dimensional quantum gravity, black holes and AdS/CFT correspondence. It is predicted to be universal and arise in many systems with emerging conformal symmetry, most notably in Sachdev--Ye--Kitaev random matrix model and Jackie--Teitelboim gravity.

In this talk we will discuss our recent progress on developing rigorous mathematical foundations of the Schwarzian Field Theory, including rigorous construction of the corresponding measure, calculation of both the partition function and a natural class of correlation functions, and a large deviation principle.

Mon, 14 Oct 2024
16:30
L4

Large Population Limit for Interacting Particle Systems on Weighted Graphs

Nathalie Ayi
(Laboratoire Jacques-Louis Lions, Sorbonne-Université, Paris)
Abstract

When studying interacting particle systems, two distinct categories emerge: indistinguishable systems, where particle identity does not influence system dynamics, and non-exchangeable systems, where particle identity plays a significant role. One way to conceptualize these second systems is to see them as particle systems on weighted graphs. In this talk, we focus on the latter category. Recent developments in graph theory have raised renewed interest in understanding largepopulation limits in these systems. Two main approaches have emerged: graph limits and mean-field limits. While mean-field limits were traditionally introduced for indistinguishable particles, they have been extended to the case of non-exchangeable particles recently. In this presentation, we introduce several models, mainly from the field of opinion dynamics, for which rigorous convergence results as N tends to infinity have been obtained. We also clarify the connection between the graph limit approach and the mean-field limit one. The works discussed draw from several papers, some co-authored with Nastassia Pouradier Duteil and David Poyato.

Fri, 06 Sep 2024

17:00 - 18:00
L4

Matroids with coefficients and Lorentzian polynomials

Matt Baker
(Georgia Institute of Technology)
Abstract

In the first half of the talk, I will briefly survey the theory of matroids with coefficients, which was introduced by Andreas Dress and Walter Wenzel in the 1980s and refined by the speaker and Nathan Bowler in 2016. This theory provides a unification of vector subspaces, matroids, valuated matroids, and oriented matroids. Then, in the second half, I will outline an intriguing connection between Lorentzian polynomials, as defined by Petter Brändén and June Huh, and matroids with coefficients.  The second part of the talk represents joint work with June Huh, Mario Kummer, and Oliver Lorscheid.

Mon, 25 Nov 2024
16:30
L4

Infinite Dyson Brownian Motion as a Gradient Flow

Kohei Suzuki (Durham)
Abstract

The Dyson Brownian motion (DMB) is a system of interacting Brownian motions with logarithmic interaction potential, which was introduced by Freeman Dyson '62 in relation to the random matrix theory. In this talk, we discuss the case where the number of particles is infinite and show that the DBM induces a diffusion structure on the configuration space having the Bakry-Émery lower Ricci curvature bound. As an application, we show that the DBM can be realised as the unique Benamou-Brenier-type gradient flow of the Boltzmann-Shannon entropy associated with the sine_beta point process. 

Thu, 02 May 2024

17:00 - 18:00
L4

Cohomogeneity one Ricci solitons and Hamiltonian formalism

Qiu Shi Wang
( Oxford)
Abstract
A Riemannian manifold is said to be of cohomogeneity one if there is a Lie group acting on it by isometries with principal orbits of codimension one. On such manifolds, the Ricci soliton equation simplifies to a system of ODEs, which can be considered as a Hamiltonian system. Various conserved quantities, such as superpotentials, can then be defined to find cases in which the system is explicitly integrable.

There is a considerable body of work, primarily due to A. Dancer and M. Wang, on the analogous procedure for the Einstein equation.

In this talk, I will introduce the abovementioned methods and illustrate with examples their usefulness in finding explicit formulae for Ricci solitons. I will also discuss the classification of superpotentials.


 

Subscribe to L4