Mon, 30 Oct 2023
15:30
L4

Quantitative implications of positive scalar curvature.

Thomas RICHARD
(Université Paris Est Créteil)
Abstract

Until the 2010’s the only « comparison geometry » result for compact Riemannian manifolds (M^n,g) with scal≥n(n-1) was Greene’s upper bound on the injectivity radius. Moreover, it is known that classical metric invariants (volume, diameter) cannot be controlled by a lower bound on the scalar curvature alone. It has only recently been discovered that some more subtle invariants, such as 2-systoles, can be controlled under a lower bounds on scal provided M has enough topology. We will present some results of Bray-Brendle-Neves (in dim 3), Zhu (in dim≤7) for S^2xT^(n-2), some version for S^2xS^2 and some conjecture with more general topology which we show to hold true under the additional assumption of Kaehlerness.

Mon, 09 Oct 2023
15:30
L4

Distribution of minimal surfaces in compact hyperbolic 3-manifolds

Ilia Smilga
((Oxford University))
Abstract

In a classical work, Bowen and Margulis proved the equidistribution of
closed geodesics in any hyperbolic manifold. Together with Jeremy Kahn
and Vladimir Marković, we asked ourselves what happens in a
three-manifold if we replace curves by surfaces. The natural analog of a
closed geodesic is then a minimal surface, as totally geodesic surfaces
exist only very rarely. Nevertheless, it still makes sense (for various
reasons, in particular to ensure uniqueness of the minimal
representative) to restrict our attention to surfaces that are almost
totally geodesic.

The statistics of these surfaces then depend very strongly on how we
order them: by genus, or by area. If we focus on surfaces whose *area*
tends to infinity, we conjecture that they do indeed equidistribute; we
proved a partial result in this direction. If, however, we focus on
surfaces whose *genus* tends to infinity, the situation is completely
opposite: we proved that they then accumulate onto the totally geodesic
surfaces of the manifold (if there are any).

Mon, 23 Oct 2023
14:15
L4

Einstein metrics on the Ten-Sphere

Matthias Wink
(Münster)
Abstract

In this talk we give an introduction to the topic of Einstein metrics on spheres. In particular, we prove the existence of three non-round Einstein metrics with positive scalar curvature on $S^{10}.$ Previously, the only even-dimensional spheres known to admit non-round Einstein metrics were $S^6$ and $S^8.$ This talk is based on joint work with Jan Nienhaus.

Mon, 03 Jun 2024
14:15
L4

Shifted Lagrange multipliers method

Young-Houn Kiem
(KIAS, Seoul)
Abstract

The Lagrange multipliers method relates critical points on a submanifold with those on an enlarged space. In derived algebraic geometry, we are allowed to consider a more general type of functions called shifted functions and thus a shifted version of the Lagrange multipliers method. If we start with quasi-smooth derived stacks, the Borisov-Joyce-Oh-Thomas virtual Lagrangian cycle of the critical locus coincides with the cosection localized virtual fundamental cycle of the enlarged space. This immediately implies the quantum Lefschetz principle of Chang-Li and an analogous result for branched covers. Based on a joint work with Hyeonjun Park. 

Mon, 30 Oct 2023
14:15
L4

Existence of harmonic maps in higher dimensions

Mikhail Karpukhin
(University College London)
Abstract

Harmonic maps from surfaces to other manifolds is a fundamental object of geometric analysis with many applications, for example to minimal surfaces. In particular, there are many available methods of constructing them such, such as using complex geometry, min-max methods or flow techniques. By contrast, much less is known for harmonic maps from higher dimensional manifolds. In the present talk I will explain the role of dimension in this problem and outline the recent joint work with D. Stern, where we provide a min-max construction for higher-dimensional harmonic maps. If time permits, an application to eigenvalue optimisation problems will be discussed. Based on joint work with D. Stern.

 

Mon, 15 Jan 2024
14:15
L4

Stability conditions for line bundles on nodal curves

Nicola Pagani
(University of Liverpool)
Abstract

Mathematicians have been interested in the problem of compactifying the Jacobian variety of curves since the mid XIX century. In this talk we will discuss how all 'reasonable' compactified Jacobians of nodal curves can be classified combinatorically. This suffices to obtain a combinatorial classification of all 'reasonable' compactified universal (over the moduli spaces of stable curves) Jacobians. This is a joint work with Orsola Tommasi.

Tue, 13 Feb 2024
12:30
L4

Scattering amplitudes and Celestial Holography

Akshay Yelleshpur Srikant
(Oxford )
Abstract

The S-Matrix in flat space is a naturally holographic observable. S-Matrix elements thus contain valuable information about the putative dual CFT. In this talk, I will first introduce some basic aspects of Celestial Holography and then explain how these can be inferred directly from scattering amplitudes. I will then focus on how the singularity structure of amplitudes interplays with traditional CFT structures particularly in the context of the operator product expansion (OPE) of the dual CFT. I will conclude with some discussion about the role played by supersymmetry in simplifying the putative dual CFT.
 

Thu, 21 Sep 2023

11:00 - 12:00
L4

Efficient prediction, estimation and identifiability analysis with mechanistic mathematical models

Professor Matthew Simpson
(QUT)
Abstract

Interpreting data using mechanistic mathematical models provides a foundation for discovery and decision-making in all areas of science and engineering. Key steps in using mechanistic mathematical models to interpret data include: (i) identifiability analysis; (ii) parameter estimation; and (iii) model prediction. Here we present a systematic, computationally efficient likelihood-based workflow that addresses all three steps in a unified way. Recently developed methods for constructing profile-wise prediction intervals enable this workflow and provide the central linkage between different workflow components. These methods propagate profile-likelihood-based confidence sets for model parameters to predictions in a way that isolates how different parameter combinations affect model predictions. We show how to extend these profile-wise prediction intervals to two-dimensional interest parameters, and then combine profile-wise prediction confidence sets to give an overall prediction confidence set that approximates the full likelihood-based prediction confidence set well.  We apply our methods to a range of synthetic data and real-world ecological data describing re-growth of coral reefs on the Great Barrier Reef after some external disturbance, such as a tropical cyclone or coral bleaching event.
 

Thu, 15 Jun 2023
17:00
L4

Beyond the Fontaine-Wintenberger theorem

Konstantinos Kartas
(IMJ-PRG/Sorbonne Université)
Abstract

Given a perfectoid field, we find an elementary extension and a henselian defectless valuation on it, whose value group is divisible and whose residue field is an elementary extension of the tilt. This specializes to the almost purity theorem over perfectoid valuation rings and Fontaine-Wintenberger. Along the way, we prove an Ax-Kochen/Ershov principle for certain deeply ramified fields, which also uncovers some new model-theoretic phenomena in positive characteristic. Notably, we get that the perfect hull of Fp(t)^h is an elementary substructure of the perfect hull of Fp((t)). Joint work with Franziska Jahnke.

Thu, 08 Jun 2023
17:00
L4

Pushing Properties for NIP Groups and Fields up the n-dependent hierarchy

Nadja Hempel
(HHU Düsseldorf)
Abstract

(joint with Chernikov) 1-dependent theories, better known as NIP theories, are the first class of the strict hierarchy of n-dependent theories. The random n-hypergraph is the canonical object which is n-dependent but not (n−1)-dependent. We proved the existence of strictly n-dependent groups for all natural numbers n. On the other hand, there are no known examples of strictly n-dependent fields and we conjecture that there aren’t any. 

We were interested which properties of groups and fields for NIP theories remain true in or can be generalized to the n-dependent context. A crucial fact about (type-)definable groups in NIP theories is the absoluteness of their connected components. Our first aim is to give examples of n-dependent groups and discuss a adapted version of absoluteness of the connected component. Secondly, we will review the known properties of NIP fields and see how they can be generalized.

Subscribe to L4