Tue, 11 Mar 2025
15:30
L4

Quiver with potential and attractor invariants

Pierre Descombes
(Imperial College London)
Abstract
Given a quiver (a directed graph) with a potential (a linear combination of cycles), one can study moduli spaces of the associated noncommutative algebra and associate so-called BPS invariants to them. These are interesting because they have a deep link with cluster algebras and provide some kind of noncommutative analogue of DT theory, the study of sheaves on Calabi-Yau 3-folds.
The generating series of BPS invariants for interesting quivers with potentials are in general very wild. However, using the Kontsevich-Soibelman wall-crossing formula, a recursive formula expresses the BPS invariants in terms of so-called attractor invariants, which are expected to be simple in interesting situations. We will discuss them for quivers with potential associated to triangulations of surfaces and quivers with potential giving noncommutative resolutions of CY3 singularities.
Tue, 25 Feb 2025
15:30
L4

The Logarithmic Hilbert Scheme

Patrick Kennedy-Hunt
(Cambridge)
Abstract

I am interested in studying moduli spaces and associated enumerative invariants via degeneration techniques. Logarithmic geometry is a natural language for constructing and studying relevant moduli spaces. In this talk I  will explain the logarithmic Hilbert (or more generally Quot) scheme and outline how the construction helps study enumerative invariants associated to Hilbert/Quot schemes- a story we now understand well. Time permitting, I will discuss some challenges and key insights for studying moduli of stable vector bundles/ sheaves via similar techniques - a theory whose details are still being worked out. 

Tue, 04 Mar 2025
15:30
L4

Mixed characteristic analogues of Du Bois and log canonical singularities

Joe Waldron
(Michigan State University)
Abstract

Singularities are measured in different ways in characteristic zero, positive characteristic, and mixed characteristic. However, classes of singularities usually form analogous groups with similar properties, with an example of such a group being klt, strongly F-regular and BCM-regular.  In this talk we shall focus on newly introduced mixed characteristic counterparts of Du Bois and log canonical singularities and discuss their properties. 

This is joint work with Bhargav Bhatt, Linquan Ma, Zsolt Patakfalvi, Karl Schwede, Kevin Tucker and Jakub Witaszek. 

Tue, 21 Jan 2025
15:30
L4

Deformations and lifts of Calabi-Yau varieties in characteristic p

Lukas Brantner
(Oxford)
Abstract

Derived algebraic geometry allows us to study formal moduli problems via their tangent Lie algebras. After briefly reviewing this general paradigm, I will explain how it sheds light on deformations of Calabi-Yau varieties. 
In joint work with Taelman, we prove a mixed characteristic analogue of the Bogomolov–Tian–Todorov theorem, which asserts that Calabi-Yau varieties in characteristic $0$ are unobstructed. Moreover, we show that ordinary Calabi–Yau varieties in characteristic $p$ admit canonical (and algebraisable) lifts to characteristic $0$, generalising results of Serre-Tate for abelian varieties and Deligne-Nygaard for K3 surfaces. 
If time permits, I will conclude by discussing some intriguing questions related to our canonical lifts.  
 

Tue, 18 Feb 2025
15:30
L4

Invariance of elliptic genus under wall-crossing

Henry Liu
(IPMU Tokyo)
Abstract

Elliptic genus, and its various generalizations, is one of the simplest numerical invariants of a scheme that one can consider in elliptic cohomology. I will present a topological condition which implies that elliptic genus is invariant under wall-crossing. It is related to Krichever-Höhn’s elliptic rigidity. Many applications are possible: to GIT quotients, moduli of sheaves, Donaldson-Thomas invariants, etc.

Tue, 04 Feb 2025
10:00
L4

Twisting Higgs modules and applications to the p-adic Simpson correspondence I (special time!)

Ahmed Abbes
(IHES)
Abstract

In 2005, Faltings initiated a p-adic analogue of the complex Simpson correspondence, a theory that has since been explored by various authors through different approaches. In this two-lecture series (part I in the Algebra Seminar and part II in the Arithmetic Geometry Seminar), I will present a joint work in progress with Michel Gros and Takeshi Tsuji, motivated by the goal of comparing the parallel approaches we have developed and establishing a robust framework to achieve broader functoriality results for the p-adic Simpson correspondence.

The approach I developed with M. Gros relies on the choice of a first-order deformation and involves a torsor of deformations along with its associated Higgs-Tate algebra, ultimately leading to Higgs bundles. In contrast, T. Tsuji's approach is intrinsic, relying on Higgs envelopes and producing Higgs crystals. The evaluations of a Higgs crystal on different deformations differ by a twist involving a line bundle on the spectral variety.  A similar and essentially equivalent twisting phenomenon occurs in the first approach when considering the functoriality of the p-adic Simpson correspondence by pullback by a morphism that may not lift to the chosen deformations.
We introduce a novel approach to twisting Higgs modules using Higgs-Tate algebras, similar to the first approach of the p-adic Simpson correspondence. In fact, the latter can itself be reformulated as a twist. Our theory provides new twisted higher direct images of Higgs modules, that we apply to study the functoriality of the p-adic Simpson correspondence by higher direct images with respect to a proper morphism that may not lift to the chosen deformations. Along the way, we clarify the relation between our twisting and another twisting construction using line bundles on the spectral variety that appeared recently in other works.

Tue, 22 Apr 2025
14:00
L4

Minimal degenerations for quiver varieties

Gwyn Bellamy
(University of Glasgow)
Abstract

For any symplectic singularity, one can consider the minimal degenerations between symplectic leaves - these are the relative singularities of a pair of adjacent leaves in the closure relation. I will describe a complete classification of these minimal degenerations for Nakajima quiver varieties. It provides an effective algorithm for computing the associated Hesse diagrams. In the physics literature, it is known that this Hasse diagram can be computed using quiver subtraction. Our results appear to recover this process. I will explain applications of our results to the question of normality of leaf closures in quiver varieties. The talk is based on joint work in progress with Travis Schedler.

Mon, 03 Mar 2025
16:30
L4

The Stein-log-Sobolev inequality and the exponential rate of convergence for the continuous Stein variational gradient descent method

Jakub Jacek Skrzeczkowski
(Mathematical Institute)
Abstract

The Stein Variational Gradient Descent method is a variational inference method in statistics that has recently received a lot of attention. The method provides a deterministic approximation of the target distribution, by introducing a nonlocal interaction with a kernel. Despite the significant interest, the exponential rate of convergence for the continuous method has remained an open problem, due to the difficulty of establishing the related so-called Stein-log-Sobolev inequality. Here, we prove that the inequality is satisfied for each space dimension and every kernel whose Fourier transform has a quadratic decay at infinity and is locally bounded away from zero and infinity. Moreover, we construct weak solutions to the related PDE satisfying exponential rate of decay towards the equilibrium. The main novelty in our approach is to interpret the Stein-Fisher information as a duality pairing between $H^{-1}$ and $H^{1}$, which allows us to employ the Fourier transform. We also provide several examples of kernels for which the Stein-log-Sobolev inequality fails, partially showing the necessity of our assumptions. This is a joint work with J. A. Carrillo and J. Warnett. 

Mon, 16 Jun 2025
16:30
L4

Flowing Datasets with Wasserstein over Wasserstein Gradient Flows

Anna Korba
(ENSAE Paris)
Abstract

Many applications in machine learning involve data represented as probability distributions. The emergence of such data requires radically novel techniques to design tractable gradient flows on probability distributions over this type of (infinitedimensional) objects. For instance, being able to flow labeled datasets is a core task for applications ranging from domain adaptation to transfer learning or dataset distillation. In this setting, we propose to represent each class by the associated conditional distribution of features, and to model the dataset as a mixture distribution supported on these classes (which are themselves probability distributions), meaning that labeled datasets can be seen as probability distributions over probability distributions. We endow this space with a metric structure from optimal transport, namely the Wasserstein over Wasserstein (WoW) distance, derive a differential structure on this space, and define WoW gradient flows. The latter enables to design dynamics over this space that decrease a given objective functional. We apply our framework to transfer learning and dataset distillation tasks, leveraging our gradient flow construction as well as novel tractable functionals that take the form of Maximum Mean Discrepancies with Sliced-Wasserstein based kernels between probability distributions.

Mon, 03 Feb 2025
16:30
L4

Shock Reflection and other 2D Riemann Problems in Gas Dynamics

Alexander Cliffe
(Università degli Studi di Padova)
Abstract

The Riemann problem is an IVP having simple piecewise constant initial data that is invariant under scaling. In 1D, the problem was originally considered by Riemann during the 19th century in the context of gas dynamics, and the general theory was more or less completed by Lax and Glimm in the mid-20th century. In 2D and MD, the situation is much more complicated, and very few analytic results are available. We discuss a shock reflection problem for the Euler equations for potential flow, with initial data that generates four interacting shockwaves. After reformulating the problem as a free boundary problem for a nonlinear PDE of mixed hyperbolic-elliptic type, the problem is solved via a sophisticated iteration procedure. The talk is based on joint work with G-Q Chen (Oxford) et. al. arXiv:2305.15224, to appear in JEMS (2025).

Subscribe to L4