Tue, 20 May 2025
15:30
L4

Relative orientations and the cyclic Deligne conjecture

Nick Rozenblyum
(University of Toronto)
Abstract

A consequence of the works of Costello and Lurie is that the Hochschild chain complex of a Calabi-Yau category admits the structure of a framed E_2 algebra (the genus zero operations). I will describe a new algebraic point of view on these operations which admits generalizations to the setting of relative
Calabi-Yau structures, which do not seem to fit into the framework of TQFTs. In particular, we obtain a generalization of string topology to manifolds with boundary, as well as interesting operations on Hochschild homology of Fano varieties. This is joint work with Chris Brav.

Tue, 03 Jun 2025
15:30
L4

Bordism categories and orientations of moduli spaces

Dominic Joyce
(Oxford)
Abstract
In many situations in Differential or Algebraic Geometry, one forms moduli spaces $\cal M$ of geometric objects, such that $\cal M$ is a manifold, or something close to a manifold (a derived manifold, Kuranishi space, …). Then we can ask whether $\cal M$ is orientable, and if so, whether there is a natural choice of orientation.
  This is important in the definition of enumerative invariants: we arrange that the moduli space $\cal M$ is a compact oriented manifold (or derived manifold), so it has a fundamental class in homology, and the invariants are the integrals of natural cohomology classes over this fundamental class.
  For example, if $X$ is a compact oriented Riemannian 4-manifold, we can form moduli spaces $\cal M$ of instanton connections on some principal $G$-bundle $P$ over $X$, and the Donaldson invariants of $X$ are integrals over $\cal M$.
  In the paper arXiv:2503.20456, Markus Upmeier and I develop a theory of "bordism categories”, which are a new tool for studying orientability and canonical orientations of moduli spaces. It uses a lot of Algebraic Topology, and computation of bordism groups of classifying spaces. We apply it to study orientability and canonical orientations of moduli spaces of $G_2$ instantons and associative 3-folds on $G_2$ manifolds, and of Spin(7) instantons and Cayley 4-folds on Spin(7) manifolds, and of coherent sheaves on Calabi-Yau 4-folds. These have applications to enumerative invariants, in particular, to Donaldson-Thomas type invariants of Calabi-Yau 4-folds.
   All this is joint work with Markus Upmeier.
Tue, 27 May 2025
15:30
L4

Cored perverse sheaves

Vidit Nanda
(Oxford)
Abstract

I will describe some recent efforts to recreate the miraculous properties of perverse sheaves on complex analytic spaces in the setting of real stratified spaces.

Tue, 17 Jun 2025

14:00 - 15:00
L4

The Maze Problem

Imre Leader
(University of Cambridge)
Abstract

Do there exist universal sequences for all mazes on the two-dimensional integer lattice? We will give background on this question, as well as some recent results. Joint work with Mariaclara Ragosta.

Tue, 10 Jun 2025

14:00 - 15:00
L4

SDP, MaxCut, Discrepancy, and the Log-Rank Conjecture

Benny Sudakov
(ETH Zurich)
Abstract

Semidefinite programming (SDP) is a powerful tool in the design of approximation algorithms. After providing a gentle introduction to the basics of this method, I will explore a different facet of SDP and show how it can be used to derive short and elegant proofs of both classical and new estimates related to the MaxCut problem and discrepancy theory in graphs and matrices.

Building on this, I will demonstrate how these results lead to an improved upper bound on the celebrated log-rank conjecture in communication complexity.

Tue, 13 May 2025

14:00 - 15:00
L4

Frame matroids with a distinguished frame element

James Davies
(University of Cambridge)
Abstract

A matroid is frame if it can be extended such that it possesses a basis $B$ (a frame) such that every element is spanned by at most two elements of $B$. Frame matroids extend the class of graphic matroids and also have natural graphical representations. We characterise the inequivalent graphical representations of 3-connected frame matroids that have a fixed element $\ell$ in their frame $B$. One consequence is a polynomial time recognition algorithm for frame matroids with a distinguished frame element.

Joint work with Jim Geelen and Cynthia Rodríquez.

Tue, 06 May 2025

14:00 - 15:00
L4

Optimally packing Hamilton cycles in random directed digraphs

Adva Mond
(King's College London)
Abstract

At most how many edge-disjoint Hamilton cycles does a given directed graph contain? It is easy to see that one cannot pack more than the minimum in-degree or the minimum out-degree of the digraph. We show that in the random directed graph $D(n,p)$ one can pack precisely this many edge-disjoint Hamilton cycles, with high probability, given that $p$ is at least the Hamiltonicity threshold, up to a polylog factor.

Based on a joint work with Asaf Ferber.

Tue, 29 Apr 2025

14:00 - 15:00
L4

Surprising orderings

Jaroslav Nešetřil
(Charles University)
Abstract

Graphs (and structures) which have a linear ordering of their vertices with given local properties have a rich spectrum of complexities. Some have full power of class NP (and thus no dichotomy) but for biconnected patterns we get dichotomy. This also displays the importance of Sparse Incomparability Lemma. This is a joint work with Gabor Kun (Budapest).

Tue, 13 May 2025
15:30
L4

Parametrising complete intersections

Jakub Wiaterek
(Oxford)
Abstract

We use Non-Reductive GIT to construct compactifications of Hilbert schemes of complete intersections. We then study ample line bundles on these compactifications in order to construct moduli spaces of complete intersections for certain degree types.

Tue, 10 Jun 2025
15:30
L4

Cohomological Donaldson—Thomas invariants for 3-manifolds

Pavel Safronov
(Edinburgh University)
Abstract
Cohomological Donaldson—Thomas theory associates cohomology groups to various moduli spaces in algebraic geometry, such as the moduli space of coherent sheaves on a Calabi—Yau 3-fold. In this talk I will explain some recent results on cohomological DT invariants in the setting of a real 3-manifold $M$. In terms of string theory it corresponds to counting D3 branes in the compactification of a type IIB string theory on $T^* M$. This setting of DT theory is particularly interesting due to its connections to topology (via skein modules), geometric representation theory (geometric Langlands program), and mathematical physics (analytic continuation of Chern—Simons theory). This talk is based on papers joint with Gunningham, Kinjo, Naef, and Park.



 

Subscribe to L4