Thu, 13 Jun 2024

14:00 - 15:00
L5

Incidence bounds via extremal graph theory

Benny Sudakov
(ETH Zurich)
Abstract

The study of counting point-hyperplane incidences in the $d$-dimensional space was initiated in the 1990's by Chazelle and became one of the central problems in discrete geometry. It has interesting connections to many other topics, such as additive combinatorics and theoretical computer science. Assuming a standard non-degeneracy condition, i.e., that no $s$ points are contained in the intersection of $s$ hyperplanes, the currently best known upper bound on the number of incidences of $m$ points and $n$ hyperplanes in $\mathbb{R}^d$ is $O((mn)^{1-1/(d+1)}+m+n)$. This bound by Apfelbaum and Sharir is based on geometrical space partitioning techniques, which apply only over the real numbers.

In this talk, we discuss a novel combinatorial approach to study such incidence problems over arbitrary fields. Perhaps surprisingly, this approach matches the best known bounds for point-hyperplane incidences in $\mathbb{R}^d$ for many interesting values of $m, n, d$. Moreover, in finite fields our bounds are sharp as a function of $m$ and $n$ in every dimension. This approach can also be used to study point-variety incidences and unit-distance problem in finite fields, giving tight bounds for both problems under a similar non-degeneracy assumption. Joint work with A. Milojevic and I. Tomon.

Mon, 06 May 2024
15:30
L5

Factorization algebras in quite a lot of generality

Clark Barwick
(University of Edinburgh)
Abstract

The objects of arithmetic geometry are not manifolds. Some concepts from differential geometry admit analogues in arithmetic, but they are not straightforward. Nevertheless, there is a growing sense that the right way to understand certain Langlands phenomena is to study quantum field theories on these objects. What hope is there of making this thought precise? I will propose the beginnings of a mathematical framework via a general theory of factorization algebras. A new feature is a subtle piece of additional structure on our objects – what I call an _isolability structure_ – that is ordinarily left implicit.

Mon, 29 Apr 2024
16:30
L5

Formality of $E_n$-algebras and cochains on spheres

Gijs Heuts
(University of Utrecht)
Abstract

It is a classical fact of rational homotopy theory that the $E_\infty$-algebra of rational cochains on a sphere is formal, i.e., quasi-isomorphic to the cohomology of the sphere. In other words, this algebra is square-zero. This statement fails with integer or mod p coefficients. We show, however, that the cochains of the n-sphere are still $E_n$-trivial with coefficients in arbitrary cohomology theories. This is a consequence of a more general statement on (iterated) loops and suspensions of $E_n$-algebras, closely related to Koszul duality for the $E_n$-operads. We will also see that these results are essentially sharp: if the R-valued cochains of $S^n$ have square-zero $E_{n+1}$-structure (for some rather general ring spectrum R), then R must be rational. This is joint work with Markus Land.

Mon, 10 Jun 2024
15:30
L5

Symmetries of the free-factor complex and commensurator rigidity for Aut(F)

Martin Bridson
((Oxford University))
Abstract

 A commensuration of a group G is an isomorphism between finite-index subgroups of G. Equivalence classes of such maps form a group, whose importance first emerged in the work of Margulis on the rigidity and arithmeticity of lattices in semisimple Lie groups. Drawing motivation from this classical setting and from the study of mapping class groups of surfaces, I shall explain why, when N is at least 3, the group of automorphisms of the free group of rank N is its own abstract commensurator. Similar results hold for certain subgroups of Aut(F_N). These results are the outcome of a long-running project with Ric Wade. An important element in the proof is a non-abelian analogue of the Fundamental Theorem of Projective Geometry in which projective subspaces are replaced by the free factors of a free group; this is the content of a long-running project with Mladen Bestvina.
 

Mon, 13 May 2024
15:30
L5

Generating RAAGs in 1-relator groups

Ashot Minasyan
(Southampton University)
Abstract
Given a finite simplicial graph $\Gamma$, the right angled Artin group (RAAG) $A(\Gamma)$ is generated by the vertices of $\Gamma$ subject to the relations that two vertices commute if and only if they are adjacent in $\Gamma$. RAAGs play an important role in Geometric Group Theory and in Low Dimensional Topology.
 
Given a group $G$, a finite graph $\Gamma$ and a homomorphism $\phi: A(\Gamma) \to G$ one can ask for conditions ensuring that this homomorphism can be "promoted" to an injective one. In my talk I will discuss such criteria in the case when $G$ is a one-relator group and $\Gamma$ is a forest. In particular, I will sketch an argument showing that it is sufficient for $\phi$ to be injective on the positive sub-monoid of $A(\Gamma)$.
 
The talk will be based on joint work with Motiejus Valiunas (University of Wroclaw, Poland).

 
Thu, 23 May 2024
12:00
L5

Cancelled

Andrea Clini
(University of Oxford)
Abstract

Cancelled

Thu, 02 May 2024
12:00
L5

Gradient Flow Approach to Minimal Surfaces

Christopher Wright
(University of Oxford)
Abstract

Minimal surfaces, which are critical points of the area functional, have long been a source of fruitful problems in geometry. In this talk, I will introduce a new approach, primarily coming from a recent paper of M. Struwe, to constructing free boundary minimal discs using a gradient flow of a suitable energy functional. I will discuss the uniqueness of solutions to the gradient flow, including recent work on the uniqueness of weak solutions, and also what is known about the qualitative behaviour of the flow, especially regarding the interpretation of singularities which arise. Time permitting, I will also mention ongoing joint work with M. Rupflin and M. Struwe on extending this theory to general surfaces with boundary.

Tue, 28 Jan 2025
13:00
L5

Symmetric impurities and constraints on their screening

Christian Copetti
(Oxford )
Abstract

"The question of whether an impurity can be screened by bulk degrees of freedom is central to the study of defects and to (variations of) the Kondo problem. In this talk I discuss how symmetry, generalized or not, can give serious constraints on the possible scenarios at long distances. These can be quantified in the UV where the defect is weakly coupled. I will give some examples of interesting symmetric defect RG flows in (1+1) and (2+1)d.

Based on https://arxiv.org/pdf/2412.18652 and work in progress."

Tue, 04 Jun 2024

14:00 - 15:00
L5

Geometrisation of the Langlands correspondence

James Newton
(University of Oxford)
Abstract

I'll give an introduction to a recent theme in the Langlands program over number fields and mixed characteristic local fields (with a much older history over function fields). This is enhancing the traditional 'set-theoretic' Langlands correspondence into something with a more geometric flavour. For example, relating (categories of) representations of p-adic groups to sheaves on moduli spaces of Galois representations. No number theory or 'Langlands' background will be assumed!

Fri, 07 Jun 2024

15:00 - 16:00
L5

Morse Theory for Group Presentations and Applications

Ximena Fernandez
(Mathematical Institute, University of Oxford)
Abstract

Discrete Morse theory serves as a combinatorial tool for simplifying the structure of a given (regular) CW-complex up to homotopy equivalence, in terms of the critical cells of discrete Morse functions. In this talk, I will introduce a refinement of this theory that not only ensures homotopy equivalence with the simplified CW-complex but also guarantees a Whitehead simple homotopy equivalence. Furthermore, it offers an explicit description of the construction of the simplified Morse complex and provides bounds on the dimension of the complexes involved in the Whitehead deformation.
This refined approach establishes a suitable theoretical framework for addressing various problems in combinatorial group theory and topological data analysis. I will show applications of this technique to the Andrews-Curtis conjecture and computational methods for inferring the fundamental group of point clouds.

This talk is based on the article: Fernandez, X. Morse theory for group presentations. Trans. Amer. Math. Soc. 377 (2024), 2495-2523.

Subscribe to L5