Fri, 31 May 2024

15:00 - 16:00
L5

Topology for spatial data from oncology and neuroscience

Bernadette Stolz-Pretzer
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

State-of-the art experimental data promises exquisite insight into the spatial heterogeneity in tissue samples. However, the high level of detail in such data is contrasted with a lack of methods that allow an analysis that fully exploits the available spatial information. Persistent Homology (PH) has been very successfully applied to many biological datasets, but it is typically limited to the analysis of single species data. In the first part of my talk, I will highlight two novel techniques in relational PH that we develop to encode spatial heterogeneity of multi species data. Our approaches are based on Dowker complexes and Witness complexes. We apply the methods to synthetic images generated by an agent-based model of tumour-immune cell interactions. We demonstrate that relational PH features can extract biological insight, including the dominant immune cell phenotype (an important predictor of patient prognosis) and the parameter regimes of a data-generating model. I will present an extension to our pipeline which combines graph neural networks (GNN) with local relational PH and significantly enhances the performance of the GNN on the synthetic data. In the second part of the talk, I will showcase a noise-robust extension of Reani and Bobrowski’s cycle registration algorithm  (2023) to reconstruct 3D brain atlases of Drosophila flies from a sequence of μ-CT images.

Fri, 17 May 2024

15:00 - 16:00
L5

Persistent Minimal Models in Rational Homotopy Theory

Kelly Spry Maggs
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract
One-parameter persistence and rational homotopy theory are two different ‘torsion-free’ algebraic models of space. Each enhances the cochain complex with additional algebraic structure— persistence equips cochain complexes with an action of a polynomial coefficient ring; rational homotopy theory equips cochains complexes with a graded-commutative product.
 
The persistent minimal model we introduce in this talk reconciles these two types of algebraic structures. Generalizing the classical case, we will describe how persistent minimal models are built by successively attaching the persistent rational homotopy groups into the persistent CDGA model. The attaching maps dualize to a new invariant called the persistent rational k-invariant.
 
This is joint work with Samuel Lavenir and Kathryn Hess: https://arxiv.org/abs/2312.08326


 

Fri, 03 May 2024

15:00 - 16:00
L5

Local systems for periodic data

Adam Onus
(Queen Mary University of London)
Abstract

 

Periodic point clouds naturally arise when modelling large homogenous structures like crystals. They are naturally attributed with a map to a d-dimensional torus given by the quotient of translational symmetries, however there are many surprisingly subtle problems one encounters when studying their (persistent) homology. It turns out that bisheaves are a useful tool to study periodic data sets, as they unify several different approaches to study such spaces. The theory of bisheaves and persistent local systems was recently introduced by MacPherson and Patel as a method to study data with an attributed map to a manifold through the fibres of this map. The theory allows one to study the data locally, while also naturally being able to appeal to local systems of (co)sheaves to study the global behaviour of this data. It is particularly useful, as it permits a persistence theory which generalises the notion of persistent homology. In this talk I will present recent work on the theory and implementation of bisheaves and local systems to study 1-periodic simplicial complexes. Finally, I will outline current work on generalising this theory to study more general periodic systems for d-periodic simplicial complexes for d>1. 

Fri, 14 Jun 2024

15:00 - 16:00
L5

The bifiltration of a relation, extended Dowker duality and studying neural representations

Melvin Vaupel
(Norweign University of Science and Technology)
Abstract

To neural activity one may associate a space of correlations and a space of population vectors. These can provide complementary information. Assume the goal is to infer properties of a covariate space, represented by ochestrated activity of the recorded neurons. Then the correlation space is better suited if multiple neural modules are present, while the population vector space is preferable if neurons have non-convex receptive fields. In this talk I will explain how to coherently combine both pieces of information in a bifiltration using Dowker complexes and their total weights. The construction motivates an interesting extension of Dowker’s duality theorem to simplicial categories associated with two composable relations, I will explain the basic idea behind it’s proof.

Fri, 24 May 2024

15:00 - 16:00
L5

Applying stratified homotopy theory in TDA

Lukas Waas
(Univeristy of Heidelberg)
Abstract

 

The natural occurrence of singular spaces in applications has led to recent investigations on performing topological data analysis (TDA) on singular data sets. However, unlike in the non-singular scenario, the homotopy type (and consequently homology) are rather course invariants of singular spaces, even in low dimension. This suggests the use of finer invariants of singular spaces for TDA, making use of stratified homotopy theory instead of classical homotopy theory.
After an introduction to stratified homotopy theory, I will describe the construction of a persistent stratified homotopy type obtained from a sample with two strata. This construction behaves much like its non-stratified counterpart (the Cech complex) and exhibits many properties (such as stability, and inference results) necessary for an application in TDA.
Since the persistent stratified homotopy type relies on an already stratified point-cloud, I will also discuss the question of stratification learning and present a convergence result which allows one to approximately recover the stratifications of a larger class of two-strata stratified spaces from sufficiently close non-stratified samples. In total, these results combine to a sampling theorem guaranteeing the (approximate) inference of (persistent) stratified homotopy types from non-stratified samples for many examples of stratified spaces arising from geometrical scenarios.

Fri, 26 Apr 2024

15:00 - 16:00
L5

Lagrangian Hofer metric and barcodes

Patricia Dietzsch
(ETH Zurich)
Further Information

Patricia is a Postdoc in Mathematics at ETH Zürich, having recently graduated under the supervision of Prof. Paul Biran.

Patricia is working in the field of symplectic topology. Some key words in her current research project are: Dehn twist, Seidel triangle, real Lefschetz fibrations and Fukaya categories. Besides this, she is a big fan of Hofer's metric, expecially of the Lagrangian Hofer metric and the many interesting open questions related to it. 

Abstract

 

This talk discusses an application of Persistence Homology in the field of Symplectic Topology. A major tool in Symplectic Topology are Floer homology groups. These are algebraic invariants that can be associated to pairs of Lagrangian submanifolds. A richer algebraic invariant can be obtained using 
filtered Lagrangian Floer theory. This gives rise to a persistence module and a barcode. Its bar lengths are invariants for the pair of Lagrangians. 
 
We explain how these numbers can be used to estimate the Lagrangian Hofer distance between the two Lagrangians: It is a well-known stability result  that the bar lengths are lower bounds of the distance. We show how to get an upper bound of the distance in terms of the bar lengths in the special case of equators in a cylinder.
Mon, 03 Jun 2024
15:30
L5

Geometric semi-norms in homology

Stephane Sabourau
(Université Paris-Est Créteil)
Abstract

The simplicial volume of a simplicial complex is a topological invariant
related to the growth of the fundamental group, which gives rise to a
semi-norm in homology. In this talk, we introduce the volume entropy
semi-norm, which is also related to the growth of the fundamental group
of simplicial complexes and shares functorial properties with the
simplicial volume. Answering a question of Gromov, we prove that the
volume entropy semi-norm is equivalent to the simplicial volume
semi-norm in every dimension. Joint work with I. Babenko.
 

Mon, 20 May 2024
15:30
L5

Hyperbolic manifolds, maps to the circle, and fibring

Giovanni Italiano
((Oxford University))
Abstract

We will discuss the problem of finding hyperbolic manifolds fibring over the circle; and show a method to construct and analyse maps from particular hyperbolic manifolds to S^1, which relies on Bestvina-Brady Morse theory. 
This technique can be used to build and detect fibrations, algebraic fibrations, and Morse functions with minimal number of critical points, which are interesting in the even dimensional case. 
After an introduction to the problem, and presentation of the main results, we will use the remaining time to focus on some easy 3-dimensional examples, in order to explicitly show the construction at work.
 

Mon, 22 Apr 2024
15:30
L5

Examples of topologically unknotted tori

Andras Juhasz
((Oxford University))
Abstract

I will discuss three different constructions of smooth tori in S^4 whose complements have fundamental group Z: turned 1-twist-spun tori due to Boyle, the union of a ribbon disc with a genus one Seifert surface constructed by Cochran and Davis, and certain tori with four critical points. They are all topologically unknotted, but it is not known whether they are smoothly standard, except for tori with four critical points whose middle level set is a split link. The branched double cover of S^4 along any of these surfaces is a potentially exotic copy of S^2 x S^2, though, in the case of Boyle's example, it cannot be distinguished from the standard S^2 x S^2 using Seiberg-Witten invariants. This is joint work with Mark Powell.

Thu, 13 Jun 2024
16:00
L5

The Gross--Kohnen--Zagier theorem via $p$-adic uniformization

Martí Roset Julià
(McGill University)
Abstract

Let $S$ be a set of rational places of odd cardinality containing infinity and a rational prime $p$. We can associate to $S$ a Shimura curve $X$ defined over $\mathbb{Q}$. The Gross--Kohnen--Zagier theorem states that certain generating series of Heegner points of $X$ are modular forms of weight $3/2$ valued in the Jacobian of $X$. We will state this theorem and outline a new approach to proving it using the theory of $p$-adic uniformization and $p$-adic families of modular forms of half-integral weight. This is joint work with Lea Beneish, Henri Darmon, and Lennart Gehrmann.

Subscribe to L5