16:00
16:00
16:00
The sum-product problem for integers with few prime factors (joint work with Hanson, Rudnev, Zhelezov)
Abstract
It was asked by E. Szemerédi if, for a finite set $A\subset \mathbf{Z}$, one can improve estimates for $\max\{|A+A|,|A\cdot A|\}$, under the constraint that all integers involved have a bounded number of prime factors -- that is, each $a\in A$ satisfies $\omega(a)\leq k$. In this paper we show that this maximum is at least of order $|A|^{\frac{5}{3}-o(1)}$ provided $k\leq (\log|A|)^{1-\varepsilon}$ for some $\varepsilon>0$. In fact, this will follow from an estimate for additive energy which is best possible up to factors of size $|A|^{o(1)}$. Our proof consists of three parts: combinatorial, analytical and number theoretical.
16:00
Siegel modular forms and algebraic cycles
Abstract
(Joint work with Kartik Prasanna)
Siegel modular forms are higher-dimensional analogues of modular forms. While each rational elliptic curve corresponds to a single holomorphic modular form, each abelian surface is expected to correspond to a pair of Siegel modular forms: a holomorphic and a generic one. We propose a conjecture that explains the appearance of these two forms (in the cohomology of vector bundles on Siegel modular threefolds) in terms of certain higher algebraic cycles on the self-product of the abelian surface. We then prove three results:
(1) The conjecture is implied by Beilinson's conjecture on special values of L-functions. Amongst others, this uses a recent analytic result of Radzwill-Yang about non-vanishing of twists of L-functions for GL(4).
(2) The conjecture holds for abelian surfaces associated with elliptic curves over real quadratic fields.
(3) The conjecture implies a conjecture of Prasanna-Venkatesh for abelian surfaces associated with elliptic curves over imaginary quadratic fields.
16:00
Moments of families of quadratic L-functions over function fields via homotopy theory
Abstract
This is a report of joint work with Bergström-Diaconu-Westerland and Miller-Patzt-Randal-Williams. Based on random matrix theory, Conrey-Farmer-Keating-Rubinstein-Snaith have conjectured precise asymptotics for moments of families of quadratic L-functions over number fields. There is an extremely similar function field analogue, worked out by Andrade-Keating. I will explain that one can relate this problem to understanding the homology of the braid group with symplectic coefficients. With Bergström-Diaconu-Westerland we compute the stable homology groups of the braid groups with these coefficients, together with their structure as Galois representations. We moreover show that the answer matches the number-theoretic predictions. With Miller-Patzt-Randal-Williams we prove an improved range for homological stability with these coefficients. Together, these results imply the conjectured asymptotics for all moments in the function field case, for all sufficiently large (but fixed) q.
14:00
Microlocal sheaves and affine Springer fibers
Abstract
The resolutions of Slodowy slices S͂e are symplectic varieties that contain the Springer fiber (G/B)e as a Lagrangian subvariety. In joint work with R. Bezrukavnikov, M. McBreen, and Z. Yun, we construct analogues of these spaces for homogeneous affine Springer fibers. We further understand the categories of microlocal sheaves in these symplectic spaces supported on the affine Springer fiber as some categories of coherent sheaves.
In this talk I will mostly focus on the case of the homogeneous element ts for s a regular semisimple element and will discuss some relations of these categories with the small quantum group providing a categorification of joint work with R.Bezrukavnikov, P. Shan and E. Vasserot.
17:00
The Conceptualization of Mathematics in Pharaonic Egypt
A joint History of Mathematics/Egyptology and Ancient Near Eastern Studies Seminar
Abstract
Ancient Egypt is credited (along with Mesopotamia) for providing the oldest extant mathematical texts. Since the 19th century, when the first edition of the Rhind mathematical papyrus was published, it has held an important role in the historiography of mathematics. One of the earliest researchers in the field of ancient Egyptian sciences was Otto Neugebauer who has been a major influence on the early development of the field. While research in Egyptian mathematics initially focused on those aspects that could be linked to its possible successors in modern mathematics, research has also revealed various characteristics that could not easily be transferred into a modern equivalent. In addition, research on other sciences, like medicine and astronomy, has yielded further evidence that a limitation on those aspects that have successors in modern sciences will at best give an incomplete picture of ancient scholarship. This will be explored in a new long-term project, which is briefly sketched. In the context of this project, Egyptian mathematics is also studied. The talk will present an example from the terminology used in Egyptian mathematical texts to describe this area of knowledge and explore its epistemological consequences for our studies of ancient Egyptian mathematics and aim to situate it in its ancient context.
Residual finiteness growth functions of surface groups with respect to characteristic quotients
Abstract
Residual finiteness growth functions of groups have attracted much interest in recent years. These are functions that roughly measure the complexity of the finite quotients needed to separate particular group elements from the identity in terms of word length. In this talk, we study the growth rate of these functions adapted to finite characteristic quotients. One potential application of this result is towards linearity of the mapping class group.
16:00
Anticyclotomic Euler systems and Kolyvagins' methods
Abstract
I will explain a formalism for anticyclotomic Euler systems for a large class of Galois representations and explain how to prove analogs of Kolyvagins' celebrated "rank one" results. A novelty of this approach lies in the use of primes that split in the CM field. This is joint work with Dimitar Jetchev and Jan Nekovar. I will also describe some higher-dimensional examples of such Euler systems.
16:00
Revisiting the Euler system for imaginary quadratic fields
Abstract
I will explain how to construct an Euler system for imaginary quadratic fields using Eisenstein series and their cohomology classes. This illustrates a template for a construction that should yield many new Euler systems.
Modular representations theory: from finite groups to linear algebraic groups
Abstract
Beginning with the foundational work of Daniel Quillen, an understanding of aspects of the cohomology of finite groups evolved into a study of representations of finite groups using geometric methods of support theory. Over decades, this approach expanded to the study of representations of a vast array of finite dimensional Hopf algebras. I will discuss how related geometric and categorical techniques can be applied to linear algebra groups.