Mon, 28 Nov 2022
16:30
L5

Obstruction-free gluing for the Einstein equations

Stefan Czimek
(Leipzig)
Abstract

We present a new approach to the gluing problem in General Relativity, that is, the problem of matching two solutions of the Einstein equations along a spacelike or characteristic (null) hypersurface. In contrast to previous constructions, the new perspective actively utilizes the nonlinearity of the constraint equations. As a result, we are able to remove the 10-dimensional spaces of obstructions to gluing present in the literature. As application, we show that any asymptotically flat spacelike initial data set can be glued to Schwarzschild initial data of sufficiently large mass. This is joint work with I. Rodnianski.

Mon, 21 Nov 2022
16:30
L5

Hyperbolic Cauchy problems with multiplicities

Claudia Garetto
(Queen Mary)
Abstract

In this talk I will discuss well-posedness of hyperbolic Cauchy problems with multiplicities and the role played by the lower order terms (Levi conditions). I will present results obtained in collaboration with Christian Jäh (Göttingen) and Michael Ruzhansky (QMUL/Ghent) on higher order equations and non-diagonalisable systems.

Mon, 07 Nov 2022
16:30
L5

Schauder estimates for any taste

Cristiana De Filippis
(Università di Parma)
Abstract

So-called Schauder estimates are a standard tool in the analysis of linear elliptic and parabolic PDE. They have been originally obtained by Hopf (1929, interior case), and by Schauder and Caccioppoli (1934, global estimates). The nonlinear case is a more recent achievement from the ’80s (Giaquinta & Giusti, Ivert, Lieberman, Manfredi). All these classical results hold in the uniformly elliptic framework. I will present the solution to the longstanding problem, open since the ‘70s, of proving estimates of such kind in the nonuniformly elliptic setting. I will also cover the case of nondifferentiable functionals and provide a complete regularity theory for a new double phase model. From joint work with Giuseppe Mingione (University of Parma).

Mon, 17 Oct 2022
16:30
L5

A unified theory of lower Ricci curvature bounds for Riemannian and sub-Riemannian structures

Luca Rizzi
(SISSA)
Abstract

The synthetic theory of Ricci curvature lower bounds introduced more than 15 years ago by Lott-Sturm-Villani has been largely succesful in describing the geometry of metric measure spaces. However, this theory fails to include sub-Riemannian manifolds (an important class of metric spaces, the simplest example being the so-called Heisenberg group). Motivated by Villani's ``great unification'' program, in this talk we propose an extension of Lott-Sturm-Villani's theory, which includes sub-Riemannian geometry. This is a joint work with Barilari (Padua) and Mondino (Oxford). The talk is intended for a general audience, no previous knowledge of optimal transport or sub-Riemannian geometry is required.

Mon, 10 Oct 2022

16:30 - 17:30
L5

*** Cancelled *** Covariance-Modulated Optimal Transport

Franca Hoffmann
(Hausdorff Center for Mathematics)
Abstract

*** Cancelled *** We study a variant of the dynamical optimal transport problem in which the energy to be minimised is modulated by the covariance matrix of the current distribution. Such transport metrics arise naturally in mean field limits of recent Ensemble Kalman methods for inverse problems. We show how the transport problem splits into two separate minimisation problems: one for the evolution of mean and covariance of the interpolating curve, and one for its shape. The latter consists in minimising the usual Wasserstein length under the constraint of maintaining fixed mean and covariance along the interpolation. We analyse the geometry induced by this modulated transport distance on the space of probabilities, as well as the dynamics of the associated gradient flows. This is joint work of Martin Burger, Matthias Erbar, Daniel Matthes and André Schlichting.

Fri, 25 Nov 2022

15:00 - 16:00
L5

Signal processing on cell complexes using discrete Morse theory

Celia Hacker
(EPFL)
Further Information

Celia is a PhD student under the supervision of Kathryn Hess since 2018.

Abstract

At the intersection of Topological Data Analysis and machine learning, the field of cellular signal processing has advanced rapidly in recent years. In this context, each signal on the cells of a complex is processed using the combinatorial Laplacian and the resulting Hodge decomposition. Meanwhile, discrete Morse theory has been widely used to speed up computations by reducing the size of complexes while preserving their global topological properties. In this talk, we introduce an approach to signal compression and reconstruction on complexes that leverages the tools of discrete Morse theory. The main goal is to reduce and reconstruct a cell complex together with a set of signals on its cells while preserving their global topological structure as much as possible. This is joint work with Stefania Ebli and Kelly Maggs.

Fri, 18 Nov 2022

15:00 - 16:00
L5

Tensor-based frameworks for cancer genomics

Neriman Tokcan
(MIT & Harvard)
Further Information

(taken from https://nerimantokcan.com/)

Neriman Tokcan's research focuses on formulating novel, mathematically sound theoretical frameworks to perform analysis of multi-modal, multi-dimensional data while preserving the integrity of their structure. Her work on the generalization of matrix-based compression, noise elimination, and dimension reduction methods to higher dimensions. Her background is at the intersection of algebraic geometry, multi-linear algebra, combinatorics, and representation theory. I explore applications in bioinformatics and cancer genomics.

Currently, Neriman is working on the formulation of the novel, mathematically sound tensor-based frameworks, and the development of computational tools to model tumor microenvironments.

Neriman will join the University of Massachusetts Boston as a Tenure-Track Assistant Professor of Applied Mathematics in January 2023.

Abstract

The tumor microenvironment (TME) is a complex milieu around the tumor, whereby cancer cells interact with stromal, immune, vascular, and extracellular components. The TME is being increasingly recognized as a key determinant of tumor growth, disease progression, and response to therapies. We build a generalizable and robust tensor-based framework capable of integrating dissociated single-cell and spatially resolved RNA-seq data for a comprehensive analysis of the TME. Tensors are a generalization of matrices to higher dimensions. Tensor methods are known to be able to successfully incorporate data from multiple sources and perform a joint analysis of heterogeneous high-dimensional data sets. The methodologies developed as part of this effort will advance our understanding of the TME in multiple directions. These include cellular heterogeneity within the TME, crosstalks between cells, and tumor-intrinsic pathways stimulating tumor growth and immune evasion.

Fri, 04 Nov 2022

15:00 - 16:00
L5

Dynamics of neural circuits at different scales

Jānis Lazovskis
(RTU Riga Business School)
Further Information

Jānis Lazovskis is an Assistant Professor at RTU Riga Business School in Riga, Latvia, working in algebraic topology and topological data analysis, in particular dynamic data. His research focuses on the intersection of topology and neuroscience, simplifying and classifying in silico activity with graph theoretic and topological tools. Previously Jānis worked as a postdoc in Ran Levi's group at Aberdeen, and completed his PhD under Ben Antieau at the University of Illinois at Chicago. As an instructor and administrator of undergraduate mathematics courses, Jānis pushes for more inclusion and equity through better teaching methods and modified assessments.

Abstract

Models of animal brains are increasingly common and mapped in increasing detail. To simplify analysis of their function, we consider subregions and show that they perform well as classifiers of overall activity, with only a fraction of the neurons. The uniqueness of such ''reliable'' regions seems to be related to the types of connections that pairs of neurons form in them. By focusing on topologically significant structures and reciprocally connected neurons we find even stronger classification results. This is ongoing work across several institutions, including EPFL, the Blue Brain Project, and the University of Aberdeen.

Fri, 28 Oct 2022

15:00 - 16:00
L5

Topological Data Analytic Frameworks for Discovering Biophysical Signatures in 3D Shapes and Images

Lorin Crawford
(Brown University)
Further Information

Lorin Crawford is the RGSS Assistant Professor of Biostatistics at Brown University. He is affiliated with the Center for Statistical Sciences, Center for Computational Molecular Biology, and the Robert J. and Nancy D. Carney Institute for Brain Science.

Abstract
Fri, 21 Oct 2022

15:00 - 16:00
L5

Kan Extensions and Kan Ensembles in Machine Learning

Dan Shiebler
(Abnormal Security)
Further Information

Right now Dan works as the Head of Machine Learning at Abnormal Security. Previously. He led the Web Ads Machine Learning team at Twitter. Before that he worked as a Staff ML Engineer at Twitter Cortex and a Senior Data Scientist at TrueMotion.

His PhD research at the University of Oxford focused on applications of Category Theory to Machine Learning (advised by Jeremy Gibbons and Cezar Ionescu). Before that he worked as a Computer Vision Researcher at the Serre Lab.

 

You can find out more about Dan here: https://danshiebler.com/ 

Abstract

A common problem in data science is "use this function defined over this small set to generate predictions over that larger set." Extrapolation, interpolation, statistical inference and forecasting all reduce to this problem. The Kan extension is a powerful tool in category theory that generalizes this notion. In this work we explore several applications of Kan extensions to data science. We begin by deriving simple classification and clustering algorithms as Kan extensions and experimenting with these algorithms on real data. Next, we build more complex and resilient algorithms from these simple parts.

Subscribe to L5