Tue, 03 Jun 2025
15:00
L5

Proper versus trivial actions on Lp-spaces

Indira Chatterji
Abstract

Property (T) (respectively aTmenability) is equivalent to admitting only a trivial action (respectively, a proper action) on a median space, and is also equivalent to admitting only a trivial action (respectively, a proper action) on a Hilbert space (so some L2). For p>2 I will investigate an analogous equivalent characterisation.

Tue, 03 Jun 2025
15:00
L5

TBC

Fri, 21 Mar 2025
12:00
L5

Positive geometries and canonical forms via mixed Hodge theory

Francis Brown
(Oxford)
Abstract

''Positive geometries'' are a class of semi-algebraic domains which admit a unique ''canonical form'': a logarithmic form whose residues match the boundary structure of the domain. The study of such geometries is motivated by recent progress in particle physics, where the corresponding canonical forms are interpreted as the integrands of scattering amplitudes. We recast these concepts in the language of mixed Hodge theory, and identify ''genus zero pairs'' of complex algebraic varieties as a natural and general framework for the study of positive geometries and their canonical forms. In this framework, we prove some basic properties of canonical forms which have previously been proved or conjectured in the literature. We give many examples and study in detail the case of arrangements of hyperplanes and convex polytopes.

[arXiv:2501.03202]

Wed, 12 Mar 2025
11:15
L5

Positive geometries and canonical forms via mixed Hodge theory

Francis Brown
( Oxford)
Abstract

''Positive geometries'' are a class of semi-algebraic domains which admit a unique ''canonical form'': a logarithmic form whose residues match the boundary structure of the domain. The study of such geometries is motivated by recent progress in particle physics, where the corresponding canonical forms are interpreted as the integrands of scattering amplitudes. We recast these concepts in the language of mixed Hodge theory, and identify ''genus zero pairs'' of complex algebraic varieties as a natural and general framework for the study of positive geometries and their canonical forms. In this framework, we prove some basic properties of canonical forms which have previously been proved or conjectured in the literature. We give many examples and study in detail the case of arrangements of hyperplanes and convex polytopes.

Mon, 05 May 2025
15:30
L5

Systolic freedom

Alexey Balitskiy
(University of Luxembourg)
Abstract
Systolic geometry is a subfield of quantitative topology, which started in the late 40s from questions of the following sort: given a non-simply-connected surface (or a higher-dimensional Riemannian manifold), what is the length of the shortest non-contractible loop? This quantity is called the systole; another example of a systolic invariant is the cosystole, which is the smallest area of a codimension-1 submanifold that does not separate the manifold into several pieces. Answering a question of Gromov, in 1999 Freedman exhibited first examples of Riemannian metrics in which the product of the systole and the cosystole exceeds the volume; this manifests the phenomenon of systolic freedom. In our joint work with Hannah Alpert and Larry Guth, we showed that Freedman's examples are almost as "free" as possible, by bounding the systolic product by the volume raised to the power of $1+\epsilon$. I will give an overview of the systolic freedom phenomenon, including the flavors of proofs in the field.


 

Mon, 05 May 2025
14:15
L5

The state of the art in the formalisation of geometry

Heather Macbeth
(Imperial College London)
Abstract
The last ten years have seen extensive experimentation with computer formalisation systems such as Lean. It is now clear that these systems can express arbitrarily abstract mathematical definitions, and arbitrarily complicated mathematical proofs.
 
The current situation, then, is that everything is possible in principle -- and comparatively little is possible yet in practice! In this talk I will survey the state of the art in geometry (differential and algebraic). I will outline the current frontier of what has been formalised, and I will try to explain the main obstacles to progress.
Thu, 13 Mar 2025
16:00
L5

A Forward-Backward Approach to Endogenous Distress Contagion

Philipp Jettkant
(Imperial College )
Further Information

Please join us for refreshments outside the lecture room from 15:30.

Abstract

In this talk, I will introduce a dynamic model of a banking network in which the value of interbank obligations is continuously adjusted to reflect counterparty default risk. An interesting feature of the model is that the credit value adjustments increase volatility during downturns, leading to endogenous distress contagion. The counterparty default risk can be computed backwards in time from the obligations' maturity date, leading to a specification of the model in terms of a forward-backward stochastic differential equation (FBSDE), coupled through the banks' default times. The singular nature of this coupling, makes a probabilistic analysis of the FBSDE challenging. So, instead, we derive a characterisation of the default probabilities through a cascade of partial differential equations (PDE). Each PDE represents a configuration with a different number of defaulted banks and has a free boundary that coincides with the banks' default thresholds. We establish classical well-posedness of this PDE cascade, from which we derive existence and uniqueness of the FBSDE.

Fri, 07 Mar 2025
12:00
L5

A general hierarchy of charges for sub-leading soft theorems at all orders

Giorgio Pizzolo
(Durham University)
Abstract
The deep connection between the soft limits of scattering amplitudes and asymptotic symmetries relies on the construction of a well-defined phase space at null infinity, which can be set up perturbatively via an expansion in the soft particle energy. At leading order, this result has by now been established.
In this talk, I will present a new general procedure for constructing the extended phase space for Yang-Mills theory, based on the Stueckelberg mechanism, that is capable of handling the asymptotic symmetries and construction of charges responsible for sub-leading soft theorems at all orders. The generality of the procedure allows it to be directly applied to the computation of both three- and loop-level soft limits. Based on [2407.13556] and [2405.06629], with Silvia Nagy and Javier Peraza.
Mon, 28 Apr 2025
14:15
L5

Complex Dynamics — degenerations and irreducibility problems

Rohini Ramadas
(University of Warwick)
Abstract

Complex dynamics is the study of the behaviour, under iteration, of complex polynomials and rational functions. This talk is about an application of combinatorial algebraic geometry to complex dynamics. The n-th Gleason polynomial G_n is a polynomial in one variable with Z-coefficients, whose roots correspond to degree-2 polynomials with an n-periodic critical point. Per_n is a (nodal) Riemann surface parametrizing degree-2 rational functions with an n-periodic critical point. Two long-standing open questions are: (1) Is G_n is irreducible over Q? (2) Is Per_n connected? I will sketch an argument showing that if G_n is irreducible over Q, then Per_n is connected. In order to do this, we find a special degeneration of degree-2 rational maps that tells us that Per_n has smooth point with Q-coordinates "at infinity”.

Mon, 26 May 2025
15:30
L5

Relative Invertibility and Full Dualizability of Finite Braided Tensor Categories

Thibault Décoppet
(Harvard University)
Abstract

I will discuss an enriched version of Shimizu's characterizations of non-degeneracy for finite braided tensor categories. Using these characterizations, it follows that an enriched finite braided tensor category is invertible as an object of the Morita 4-category of enriched braided tensor categories if and only if it is non-degenerate. As an application, I will explain how to extend the full dualizability result of Brochier-Jordan-Synder by showing that a finite braided tensor category is fully dualizable in the Morita 4-category of braided tensor categories if its symmetric center is separable.
 

Subscribe to L5