Mon, 16 Jun 2025
13:00
L6

An Introduction to the ZX-calculus

Martin Daan van IJcken
Abstract

 

Abstract: This talk introduces the ZX-calculus, a powerful graphical language for reasoning about quantum computations. I will start with an overview of process theories, a general framework for describing how processes act upon different types of information. I then focus on the process theory of quantum circuits, where each function (or gate) is a unitary linear transformation acting upon qubits. The ZX-calculus simplifies the set of available gates in terms of two atomic operations: Z and X spiders, which generalize rotations around the Z and X axes of the Bloch sphere. I demonstrate how to translate quantum circuits into ZX-diagrams and how to simplify ZX diagrams using a set of seven equivalences. Through examples and illustrations, I hope to convey that the ZX-calculus provides an intuitive and powerful tool for reasoning about quantum computations, allowing for the derivation of equivalences between circuits. By the end of the talk listeners should be able to understand equations written in the ZX-calculus and potentially use them in their own work.

Tue, 17 Jun 2025
16:00
L6

Quantum Chaos, Random Matrices, and Spread Complexity of Time Evolution.

Vijay Balasubramanian
(University of Pennsylvania)
Abstract

I will describe a measure of quantum state complexity defined by minimizing the spread of the wavefunction over all choices of basis. We can efficiently compute this measure, which displays universal behavior for diverse chaotic systems including spin chains, the SYK model, and quantum billiards.  In the minimizing basis, the Hamiltonian is tridiagonal, thus representing the dynamics as if they unfold on a one-dimensional chain. The recurrent and hopping matrix elements of this chain comprise the Lanczos coefficients, which I will relate through an integral formula to the density of states. For Random Matrix Theories (RMTs), which are believed to describe the energy level statistics of chaotic systems, I will also derive an integral formula for the covariances of the Lanczos coefficients. These results lead to a conjecture: quantum chaotic systems have Lanczos coefficients whose local means and covariances are described by RMTs. 
 

Mon, 26 May 2025
13:00
L6

QFT-universality from String Theory

Maria Nocchi
Abstract

String-inspired methods have revealed deep connections between seemingly unrelated field theories. A striking example is the double copy structure, rooted in the string theory Kawai–Lewellen–Tye (KLT) relations. In this talk, we will explore how a variety of theories—including colored scalars, pions, and gluons—emerge from a single, unifying object: the KLT kernel. We will argue that this kernel is not only a powerful computational tool, but also a conceptually rich structure worthy of independent study.

Based mainly on https://arxiv.org/abs/1610.04230 and the recent work https://arxiv.org/abs/2505.01501.

Tue, 20 May 2025
14:00
L6

Dehn functions of Bestvina--Brady groups

Matteo Migliorini
(Karlsruhe Institute of Technology)
Abstract

Bestvina--Brady groups were first introduced by Bestvina and Brady for their interesting finiteness properties. In this talk, we discuss their Dehn functions, that are a notion of isoperimetric inequality for finitely presented groups and can be thought of as a "quantitative version" of finite presentability. A result of Dison shows that the Dehn function of a Bestvina--Brady group is always bounded above by a quartic polynomial.

Our main result is to compute the Dehn function for all finitely presented Bestvina--Brady groups. In particular, we show that the Dehn function of a Bestvina--Brady group grows as a polynomial of integer degree, and we present the combinatorial criteria on the graph that determine whether the Dehn functions of the associated Bestvina--Brady group is linear, quadratic, cubic, or quartic.

This is joint work with Chang and García-Mejía.

Mon, 19 May 2025
13:00
L6

Mellin transforms for recursive sums of Feynman integrals

Paul-Hermann Balduf
Abstract

In recent meetings of the journal club, two constructions that have been
discussed are Mellin transforms and chord diagrams. In my talk, I will
continue that thread and review  how a Mellin transform describes the
insertion of subgraphs into Feynman integrals. This operation comes up
in various contexts, as a concrete example, I will show how to compute
the infinite sum of rainbow diagrams in phi^3 theory in 6 dimensions. On
a combinatorial level, the procedure can be encoded by chord diagrams,
or by tubings of rooted trees, which I will mention in passing.
The talk is loosely based on doi 10.1112/jlms.70006 .
 

Fri, 16 May 2025
13:00
L6

Certifying robustness via topological representations

Andrea Guidolin
(University of Southampton)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract
Deep learning models are known to be vulnerable to small malicious perturbations producing so-called adversarial examples. Vulnerability to adversarial examples is of particular concern in the case of models developed to operate in security- and safety-critical situations. As a consequence, the study of robustness properties of deep learning models has recently attracted significant attention.

In this talk we discuss how the stability results for the invariants of Topological Data Analysis can be exploited to design machine learning models with robustness guarantees. We propose a neural network architecture that can learn discriminative geometric representations of data from persistence diagrams. The learned representations enjoy Lipschitz stability with a controllable Lipschitz constant. In adversarial learning, this stability can be used to certify robustness for samples in a dataset, as we demonstrate on synthetic data.
Mon, 05 May 2025
16:00
L6

Modular arithmetic in the lambda-calculus

Maximilien Mackie
(University of Oxford)
Abstract

The lambda-calculus was invented to formalise arithmetic by encoding numbers and operations as abstract functions. We will introduce the lambda-calculus and present two encodings of modular arithmetic: the first is a recipe to quotient your favourite numeral system, and the second is purpose-built for modular arithmetic. A highlight of the second approach is that it does not require recursion i.e., it is defined without fixed-point operators. If time allows, we will also give an implementation of the Chinese remainder theorem which improves computational efficiency. 

Mon, 09 Jun 2025
16:00
L6

TBC

Alexandra Kowalska
(Univesity of Oxford)
Abstract

TBC

Mon, 02 Jun 2025
16:00
L6

On the largest $k$-product-free subsets of the Alternating Groups

Anubhab Ghosal
(University of Oxford)
Abstract

A subset $A$ of $A_n$ is $k$-product-free if for all $a_1,a_2,\dots,a_k\in A$, $a_1a_2\dots a_k$ $\notin A$.
We determine the largest $3$-product-free and $4$-product-free subsets of $A_n$ for sufficiently large $n$. We also obtain strong stability results and results on multiple sets with forbidden cross products. The principal technical ingredient in our approach is the theory of hypercontractivity in $S_n$. Joint work with Peter Keevash.

Mon, 26 May 2025
16:00
L6

Large values of Dirichlet polynomials with characters

Vishal Gupta
(University of Oxford)
Abstract

Dirichlet polynomials are useful in the study of the Riemann zeta function & Dirichlet L functions, serving as approximations to them via the approximate functional equation. Understanding how often they can be large gives bounds on the number of zeroes of these functions in vertical strips - known as zero density estimates - which are relevant to the distribution of primes in short intervals. Based on Guth-Maynard, we study large values of Dirichlet polynomials with characters, relevant to Dirichlet L functions. Joint work with Yung Chi Li. 

Subscribe to L6