16:00
Matrix-product state skeletons in Onsager-integrable quantum chains
Abstract
Matrix-product state (MPS) skeletons are connected networks of local one-dimensional quantum lattice models with ground states admitting an MPS representation with finite bond dimension. In this talk, I will discuss how such skeletons underlie certain families of models obeying the Onsager algebra, and how these simple ground states provide a route to explicitly computing correlation functions.
16:00
Hard Unknot Diagrams and Arc Presentations
Abstract
13:00
Towards Finite Element Tensor Calculus
Abstract
Classical finite element methods discretize scalar functions using piecewise polynomials. Vector finite elements, such as those developed by Raviart-Thomas, Nédélec, and Brezzi-Douglas-Marini in the 1970s and 1980s, have since undergone significant theoretical advancements and found wide-ranging applications. Subsequently, Bossavit recognized that these finite element spaces are specific instances of Whitney’s discrete differential forms, which inspired the systematic development of Finite Element Exterior Calculus (FEEC). These discrete topological structures and patterns also emerge in fields like Topological Data Analysis.
In this talk, we present an overview of discrete and finite element differential forms motivated by applications from topological hydrodynamics, alongside recent advancements in tensorial finite elements. The Bernstein-Gelfand-Gelfand (BGG) sequences encode the algebraic and differential structures of tensorial problems, such as those encountered in solid mechanics, differential geometry, and general relativity. Discretization of the BGG sequences extends the periodic table of finite elements, originally developed for Whitney forms, to include Christiansen’s finite element interpretation of Regge calculus and various distributional finite elements for fluids and solids as special cases. This approach further illuminates connections between algebraic and geometric structures, generalized continuum models, finite elements, and discrete differential geometry.
11:30
On the weak coupling limit of the Schrödinger equation with periodic potential
13:00
Generalized Persistent Laplacians and Their Spectral Properties
Abstract
Randomness in the Spectrum of the Laplacian: From Flat Tori to Hyperbolic Surfaces of High Genus
Abstract
I will report on recent progress on influential conjectures from the 1970s and 1980s (Berry-Tabor, Bohigas-Giannoni-Schmit), which suggest that the spectral statistics of the Laplace-Beltrami operator on a given compact Riemannian manifold should be described either by a Poisson point process or by a random matrix ensemble, depending on whether the geodesic flow is integrable or “chaotic”. This talk will straddle aspects of analysis, geometry, probability, number theory and ergodic theory, and should be accessible to a broad audience. The two most recent results presented in this lecture were obtained in collaboration with Laura Monk and with Wooyeon Kim and Matthew Welsh.
13:00
Zero sets from the viewpoint of topological persistence
Abstract
Studying the topology of zero sets of maps is a central topic in many areas of mathematics. Classical homological invariants, such as Betti numbers, are not always suitable for this purpose due to the fact that they do not distinguish between topological features of different sizes. Topological data analysis provides a way to study topology coarsely by ignoring small-scale features. This approach yields generalizations of a number of classical theorems, such as Bézout's theorem and Courant’s nodal domain theorem, to a wider class of maps. We will explain this circle of ideas and discuss potential directions for future research. The talk is partially based on joint works with L. Buhovsky, J. Payette, I. Polterovich, L. Polterovich and E. Shelukhin.
Randomness in the spectrum of the Laplacian: from flat tori to hyperbolic surfaces of high genus
(Joint seminar with OxPDE)
Abstract
I will report on recent progress on influential conjectures from the 1970s and 1980s (Berry-Tabor, Bohigas-Giannoni-Schmit), which suggest that the spectral statistics of the Laplace-Beltrami operator on a given compact Riemannian manifold should be described either by a Poisson point process or by a random matrix ensemble, depending on whether the geodesic flow is integrable or “chaotic”. This talk will straddle aspects of analysis, geometry, probability, number theory and ergodic theory, and should be accessible to a broad audience. The two most recent results presented in this lecture were obtained in collaboration with Laura Monk and with Wooyeon Kim and Matthew Welsh.