13:00
Path integrals and state sums for general defect TQFTs
Abstract
For homogeneous, defect-free TQFTs, (1) n+\epsilon-dimensional versions of the theories are relatively easy to construct; (2) an n+\epsilon-dimensional theory can be extended to n+1-dimensional (i.e. the top-dimensional path integral can be defined) if certain more restrictive conditions related to handle cancellation are satisfied; and (3) applying this path integral construction to a handle decomposition of an n+1-manifold yields a state sum description of the path integral. In this talk, I'll show that the same pattern holds for defect TQFTs. The adaptation of homogeneous results to the defect setting is mostly straightforward, with the only slight difficulty being the purely topological problem of generalizing handle theory to manifolds with defects. If time allows, I'll describe two applications: a Verlinde-like dimension formula for the dimension of the ground state of fracton systems, and a generalization, to arbitrary dimension, of Ostrik's theorem relating algebra objects to modules (gapped boundaries).
13:00
An Introduction to the ZX-calculus
Abstract
Abstract: This talk introduces the ZX-calculus, a powerful graphical language for reasoning about quantum computations. I will start with an overview of process theories, a general framework for describing how processes act upon different types of information. I then focus on the process theory of quantum circuits, where each function (or gate) is a unitary linear transformation acting upon qubits. The ZX-calculus simplifies the set of available gates in terms of two atomic operations: Z and X spiders, which generalize rotations around the Z and X axes of the Bloch sphere. I demonstrate how to translate quantum circuits into ZX-diagrams and how to simplify ZX diagrams using a set of seven equivalences. Through examples and illustrations, I hope to convey that the ZX-calculus provides an intuitive and powerful tool for reasoning about quantum computations, allowing for the derivation of equivalences between circuits. By the end of the talk listeners should be able to understand equations written in the ZX-calculus and potentially use them in their own work.
16:00
Quantum Chaos, Random Matrices, and Spread Complexity of Time Evolution.
Abstract
I will describe a measure of quantum state complexity defined by minimizing the spread of the wavefunction over all choices of basis. We can efficiently compute this measure, which displays universal behavior for diverse chaotic systems including spin chains, the SYK model, and quantum billiards. In the minimizing basis, the Hamiltonian is tridiagonal, thus representing the dynamics as if they unfold on a one-dimensional chain. The recurrent and hopping matrix elements of this chain comprise the Lanczos coefficients, which I will relate through an integral formula to the density of states. For Random Matrix Theories (RMTs), which are believed to describe the energy level statistics of chaotic systems, I will also derive an integral formula for the covariances of the Lanczos coefficients. These results lead to a conjecture: quantum chaotic systems have Lanczos coefficients whose local means and covariances are described by RMTs.
13:00
QFT-universality from String Theory
Abstract
String-inspired methods have revealed deep connections between seemingly unrelated field theories. A striking example is the double copy structure, rooted in the string theory Kawai–Lewellen–Tye (KLT) relations. In this talk, we will explore how a variety of theories—including colored scalars, pions, and gluons—emerge from a single, unifying object: the KLT kernel. We will argue that this kernel is not only a powerful computational tool, but also a conceptually rich structure worthy of independent study.
Based mainly on https://arxiv.org/abs/1610.04230 and the recent work https://arxiv.org/abs/2505.01501.
14:00
Dehn functions of Bestvina--Brady groups
Abstract
Bestvina--Brady groups were first introduced by Bestvina and Brady for their interesting finiteness properties. In this talk, we discuss their Dehn functions, that are a notion of isoperimetric inequality for finitely presented groups and can be thought of as a "quantitative version" of finite presentability. A result of Dison shows that the Dehn function of a Bestvina--Brady group is always bounded above by a quartic polynomial.
Our main result is to compute the Dehn function for all finitely presented Bestvina--Brady groups. In particular, we show that the Dehn function of a Bestvina--Brady group grows as a polynomial of integer degree, and we present the combinatorial criteria on the graph that determine whether the Dehn functions of the associated Bestvina--Brady group is linear, quadratic, cubic, or quartic.
This is joint work with Chang and García-Mejía.
13:00
Mellin transforms for recursive sums of Feynman integrals
Abstract
In recent meetings of the journal club, two constructions that have been
discussed are Mellin transforms and chord diagrams. In my talk, I will
continue that thread and review how a Mellin transform describes the
insertion of subgraphs into Feynman integrals. This operation comes up
in various contexts, as a concrete example, I will show how to compute
the infinite sum of rainbow diagrams in phi^3 theory in 6 dimensions. On
a combinatorial level, the procedure can be encoded by chord diagrams,
or by tubings of rooted trees, which I will mention in passing.
The talk is loosely based on doi 10.1112/jlms.70006 .
13:00
Certifying robustness via topological representations
Note: we would recommend to join the meeting using the Teams client for best user experience.
Abstract
In this talk we discuss how the stability results for the invariants of Topological Data Analysis can be exploited to design machine learning models with robustness guarantees. We propose a neural network architecture that can learn discriminative geometric representations of data from persistence diagrams. The learned representations enjoy Lipschitz stability with a controllable Lipschitz constant. In adversarial learning, this stability can be used to certify robustness for samples in a dataset, as we demonstrate on synthetic data.
16:00
Modular arithmetic in the lambda-calculus
Abstract
The lambda-calculus was invented to formalise arithmetic by encoding numbers and operations as abstract functions. We will introduce the lambda-calculus and present two encodings of modular arithmetic: the first is a recipe to quotient your favourite numeral system, and the second is purpose-built for modular arithmetic. A highlight of the second approach is that it does not require recursion i.e., it is defined without fixed-point operators. If time allows, we will also give an implementation of the Chinese remainder theorem which improves computational efficiency.