Tue, 07 Jun 2022

14:00 - 15:00
L6

How to restrict representations from a complex reductive group to a real form

Lucas Mason-Brown
((Oxford University))
Abstract

Let G(R) be the real points of a complex reductive algebraic group G. There are many difficult questions about admissible representations of real reductive groups which have (relatively) easy answers in the case of complex groups. Thus, it is natural to look for a relationship between representations of G and representations of G(R). In this talk, I will introduce a functor from admissible representations of G to admissible representations of G(R). This functor interacts nicely with many natural invariants, including infinitesimal character, associated variety, and restriction to a maximal compact subgroup, and it takes unipotent representations of G to unipotent representations of G(R).

Tue, 14 Jun 2022

14:00 - 15:00
L6

Invariable generation and totally deranged elements of simple groups

Scott Harper
(Bristol)
Abstract

By a classical theorem of Jordan, every faithful transitive action of a nontrivial finite group admits a derangement (an element with no fixed points). More recently, the existence of derangements with additional properties has attracted much attention, especially for primitive actions of almost simple groups. Surprisingly, there exist almost simple groups with elements that are derangements in every faithful primitive action; we say that these elements are totally deranged. I'll talk about ongoing work to classify the totally deranged elements of almost simple groups, and I'll mention how this solves a question of Garzoni about invariable generating sets for simple groups.

Tue, 24 May 2022

15:30 - 16:30
L6

On centralizers in Azumaya domains

Thomas Bitoun
(University of Calgary)
Abstract

We prove a positive characteristic analogue of the classical result that the centralizer of a nonconstant differential operator in one variable is commutative. This leads to a new, short proof of that classical characteristic zero result, by reduction modulo p. This is joint work with Justin Desrochers available at https://arxiv.org/abs/2201.04606.

Wed, 27 Apr 2022

16:00 - 17:00
L6

Embeddings of Trees and Solvable Baumslag-Solitar Groups

Patrick Nairne
(University of Oxford)
Abstract

The question of when you can quasiisometrically embed a solvable Baumslag-Solitar group into another turns out to be equivalent to the question of when you can (1,A)-quasiisometrically embed a rooted tree into another rooted tree. We will briefly describe the geometry of the solvable Baumslag-Solitar groups before attacking the problem of embedding trees. We will find that the existence of (1,A)-quasiisometric embeddings between trees is intimately related to the boundedness of a family of integer sequences. 

Tue, 31 May 2022

14:00 - 15:00
L6

Towards 3d mirror symmetry for characteristic classes

Richard Rimanyi
(UNC Chapel Hill)
Abstract

In the first half of the talk, we will explore the concept of a characteristic class of a subvariety in a smooth ambient space. We will focus on the so-called stable envelope class,  in cohomology, K theory, and elliptic cohomology (due to Okoukov-Maulik-Aganagic). Stable envelopes have rich algebraic combinatorics, they are at the heart of enumerative geometry calculations, they show up in the study of associated (quantum) differential equations, and they are the main building blocks of constructing quantum group actions on the cohomology of moduli spaces.

In the second half of the talk, we will study a generalization of Nakajima quiver varieties called Cherkis’ bow varieties. These smooth spaces are endowed with familiar structures: holomorphic symplectic form, tautological bundles, torus action. Their algebraic combinatorics features a new powerful operation, the Hanany-Witten transition. Bow varieties come in natural pairs called 3d mirror symmetric pairs. A conjecture motivated by superstring theory predicts that stable envelopes on 3d mirror pairs are equal (in a sophisticated sense that involves switching equivariant and Kahler parameters). I will report on a work in progress, with T. Botta, to prove this conjecture.

Tue, 17 May 2022

14:00 - 15:00
L6

Splitting fields of real irreducible representations of finite groups

Dmitrii Pasechnik
(Oxford)
Abstract

We show that any irreducible representation $\rho$ of a finite group $G$ of exponent $n$, realisable over $\mathbb R$, is realisable over the field $E$ of real cyclotomic numbers of order $n$, and describe an algorithmic procedure transforming a realisation of $\rho$ over $\mathbb Q(\zeta_n)$ to one over $E$.

Tue, 14 Jun 2022

15:30 - 16:30
L6

Extreme eigenvalues of the Jacobi Ensembles

Brian Winn
(Loughborough University)
Abstract

The Jacobi Ensembles of random matrices have joint distribution of eigenvalues proportional to the integration measure in the Selberg integral. They can also be realised as the singular values of principal submatrices of random unitaries. In this talk we will review some old and new results concerning the distribution of the largest and smallest eigenvalues.

Tue, 31 May 2022

15:30 - 16:30
L6

Magic squares and the symmetric group

Ofir Gorodetsky
(University of Oxford)
Abstract

In 2004, Diaconis and Gamburd computed statistics of secular coefficients in the circular unitary ensemble. They expressed the moments of the secular coefficients in terms of counts of magic squares. Their proof relied on the RSK correspondence. We'll present a combinatorial proof of their result, involving the characteristic map. The combinatorial proof is quite flexible and can handle other statistics as well. We'll connect the result and its proof to old and new questions in number theory, by formulating integer and function field analogues of the result, inspired by the Random Matrix Theory model for L-functions.

Partly based on the arXiv preprint https://arxiv.org/abs/2102.11966

Tue, 17 May 2022

15:30 - 16:30
L6

Random landscape built by superposition of random plane waves

Bertrand Lacroix-A-Chez-Toine
(King's College London)
Abstract

Characterising the statistical properties of high dimensional random functions has been one of the central focus of the theory of disordered systems, and notably spin glasses, over the last decades. Applications to machine learning via deep neural network has seen a resurgence of interest towards this problem in recent years. The simplest yet non-trivial quantity to characterise these landscapes is the annealed total complexity, i.e. the rate of exponential growth of the average number of stationary points (or equilibria) with the dimension of the underlying space. A paradigmatic model for such random landscape in the $N$-dimensional Euclidean space consists of an isotropic harmonic confinement and a Gaussian random function, with rotationally and translationally invariant covariance [1]. The total annealed complexity in this model has been shown to display a ”topology trivialisation transition”: for weak confinement, the number of stationary points is exponentially large (positive complexity) while for strong confinement there is typically a single stationary point (zero complexity).

In this talk, I will present recent results obtained for a distinct exactly solvable model of random lanscape in the $N$-dimensional Euclidean space where the random Gaussian function is replaced by a superposition of $M > N$ random plane waves [2]. In this model, we compute the total annealed complexity in the limit $N\rightarrow\infty$ with $\alpha = M/N$ fixed and find, in contrast to the scenario exposed above, that the complexity remains strictly positive for any finite value of the confinement strength. Hence, there is no ”topology trivialisation transition” for this model, which seems to be a representative of a distinct class of universality.

 

References:

[1] Y. V. Fyodorov, Complexity of Random Energy Landscapes, Glass Transition, and Absolute Value of the Spectral Determinant of Random Matrices, Phys. Rev. Lett. 92, 240601 (2004) Erratum: Phys. Rev. Lett. 93, 149901(E) (2004).

[2] B. Lacroix-A-Chez-Toine, S. Belga-Fedeli, Y. V. Fyodorov, Superposition of Random Plane Waves in High Spatial Dimensions: Random Matrix Approach to Landscape Complexity, arXiv preprint arXiv:2202.03815, submitted to J. Math. Phys.

Tue, 10 May 2022

15:30 - 16:30
L6

Random matrix theory as a tool for analysing biological data

Anna Maltsev
(Queen Mary University)
Abstract

The sinoatrial node (SAN) is the pacemaker region of the heart.
Recently calcium signals, believed to be crucially important in heart
rhythm generation, have been imaged in intact SAN and shown to be
heterogeneous in various regions of the SAN. However, calcium imaging
is noisy, and the calcium signal heterogeneity has not been
mathematically analyzed to distinguish meaningful signals from
randomness or to identify signalling regions in an objective way. In
this work we apply methods of random matrix theory (RMT) developed for
financial data and used for analysis of various biological data sets
including β-cell collectives and EEG data. We find eigenvalues of the
correlation matrix that deviate from RMT predictions, and thus are not
explained by randomness but carry additional meaning. We use
localization properties of the eigenvectors corresponding to high
eigenvalues to locate particular signalling modules. We find that the
top eigenvector captures a common response of the SAN to action
potential. In some cases, the eigenvector corresponding to the second
highest eigenvalue appears to yield a possible pacemaker region as its
calcium signals predate the action potential. Next we study the
relationship between covariance coefficients and distance and find
that there are long range correlations, indicating intercellular
interactions in most cases. Lastly, we perform an analysis of nearest
neighbor eigenvalue distances and find that it coincides with the
universal Wigner surmise. On the other hand, the number variance,
which captures eigenvalue correlations, is a parameter that is
sensitive to experimental conditions. Thus RMT application to SAN
allows to remove noise and the global effects of the action potential
and thereby isolate the correlations in calcium signalling which are
local. This talk is based on joint work with Chloe Norris with a
preprint found here:
https://www.biorxiv.org/content/10.1101/2022.02.25.482007v1.

Subscribe to L6