Mon, 22 Nov 2021

16:00 - 17:00
L6

A Smörgåsbord of Number Theory (pre-PhDs Encouraged!)

George Robinson, Nadav Gropper, Michael Curran, Ofir Gorodetsky
Abstract

The speakers will be giving short presentations introducing topics in algebraic number theory, arithmetic topology, random matrix theory, and analytic number theory.

Undergrads and Master's students are encouraged to come and sample a taste of research in these areas.

 

Fri, 26 Nov 2021

10:00 - 11:00
L6

Devising an ANN Classifier Performance Prediction Measure

Darryl Hond
(Thales Group)
Further Information

The challenge they will present is on predicting the performance of artificial neural network (ANN) classifiers and understanding their reliability for predicting data that are not presented in the training set. We encourage all interested party to join us and especially those interested in machine learning and data science.

Tue, 30 Nov 2021
14:00
L6

The n-queens problem

Candy Bowtell
(Oxford/Birmingham)
Abstract

The $n$-queens problem asks how many ways there are to place $n$ queens on an $n \times n$ chessboard so that no two queens can attack one another, and the toroidal $n$-queens problem asks the same question where the board is considered on the surface of a torus. Let $Q(n)$ denote the number of $n$-queens configurations on the classical board and $T(n)$ the number of toroidal $n$-queens configurations. The toroidal problem was first studied in 1918 by Pólya who showed that $T(n)>0$ if and only if $n \equiv 1,5 \mod 6$. Much more recently Luria showed that $T(n)\leq ((1+o(1))ne^{-3})^n$ and conjectured equality when $n \equiv 1,5 \mod 6$. We prove this conjecture, prior to which no non-trivial lower bounds were known to hold for all (sufficiently large) $n \equiv 1,5 \mod 6$. We also show that $Q(n)\geq((1+o(1))ne^{-3})^n$ for all $n \in \mathbb{N}$ which was independently proved by Luria and Simkin and, combined with our toroidal result, completely settles a conjecture of Rivin, Vardi and Zimmerman regarding both $Q(n)$ and $T(n)$. 

In this talk we'll discuss our methods used to prove these results. A crucial element of this is translating the problem to one of counting matchings in a $4$-partite $4$-uniform hypergraph. Our strategy combines a random greedy algorithm to count `almost' configurations with a complex absorbing strategy that uses ideas from the methods of randomised algebraic construction and iterative absorption.

This is joint work with Peter Keevash.

Thu, 02 Dec 2021

14:00 - 15:30
L6

Toric Geometry

Andrea Boido
(Oxford University)
Further Information

Junior strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Tue, 16 Nov 2021
14:00
L6

The singularity probability of a random symmetric matrix is exponentially small

Matthew Jenssen
Abstract

Let $A$ be drawn uniformly at random from the set of all $n \times n$ symmetric matrices with entries in $\{-1,1\}$. We show that $A$ is singular with probability at most $e^{-cn}$ for some absolute constant $c>0$, thereby resolving a well-known conjecture. This is joint work with Marcelo Campos, Marcus Michelen and Julian Sahasrabudhe.
 

Thu, 18 Nov 2021
14:00
L6

Mock Modular Forms

Palash Singh
(Oxford University)
Further Information

Junior strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research areas. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 04 Nov 2021
14:00
L6

Higher Form Symmetries: Part 1

Mateo Galdeano
(Oxford University)
Further Information

Junior strings is a seminar series where DPhil students present topics of comment interest that do not necessarily overlap with their own research areas. This is primarly aimed at PhD students and post-docs but everyone is welcome.

Fri, 03 Dec 2021

14:00 - 15:00
L6

Fingers and Fractures: Instabilities in Viscoplastic Fluid Films

Thomasina Ball
(Warwick)
Abstract

The study of gravity currents has long been of interest due to their prevalence in industry and in nature, one such example being the spreading of viscoplastic (yield-stress) fluid films. When a viscoplastic fluid is extruded onto a flat plate, the resulting gravity current expands axisymmetrically when the surface is dry and rough. In this talk, I will discuss two instabilities that arise when (1) the no-slip surface is replaced by a free-slip surface; and (2) the flat plate is wet by a thin coating of water.

Subscribe to L6