Fri, 05 Nov 2021

14:00 - 15:00
L6

Carbon capture and storage in layered porous reservoirs

Graham Benham
(Cambridge)
Abstract

The injection of CO2 into porous subsurface reservoirs is a technological means for removing anthropogenic emissions, which relies on a series of complex porous flow properties. During injection of CO2 small-scale heterogeneities, often in the form of sedimentary layering, can play a significant role in focusing the flow of less viscous CO2 into high permeability pathways, with large-scale implications for the overall motion of the CO2 plume. In these settings, capillary forces between the CO2 and water preferentially rearrange CO2 into the most permeable layers (with larger pore space), and may accelerate plume migration by as much as 200%. Numerous factors affect overall plume acceleration, including the structure of the layering, the permeability contrast between layers, and the playoff between the capillary, gravitational and viscous forces that act upon the flow. However, despite the sensitivity of the flow to these heterogeneities, it is difficult to acquire detailed field measurements of the heterogeneities owing to the vast range of scales involved, presenting an outstanding challenge. As a first step towards tackling this uncertainty, we use a simple modelling approach, based on an upscaled thin-film equation, to create ensemble forecasts for many different types and arrangements of sedimentary layers. In this way, a suite of predictions can be made to elucidate the most likely scenarios for injection and the uncertainty associated with such predictions. 

Tue, 23 Nov 2021

15:30 - 16:30
L6

Can one hear a real symmetric matrix?

Uzy Smilansky
(Weizmann Institute of Science)
Abstract

The question asked in the title is addressed from two points of view: First, we show that providing enough (term to be explained) spectral data, suffices to reconstruct uniquely generic (term to be explained) matrices. The method is well defined but requires somewhat cumbersome computations. Second, restricting the attention to banded matrices with band-width much smaller than the dimension, one can provide more spectral data than the number of unknown matrix elements. We make use of this redundancy to reconstruct generic banded matrices in a much more straight-forward fashion where the “cumbersome computations” can be skipped over. Explicit criteria for a matrix to be in the non-generic set are provided.

 

Tue, 09 Nov 2021

15:30 - 16:30
L6

Hermitian matrix model with non-trivial covariance and relations to quantum field theory

Alexander Hock
(University of Oxford)
Abstract

Hermitian matrix models with non-trivial covariance will be introduced. The Kontsevich Model is the prime example, which was used to prove Witten's conjecture about the generating function of intersection numbers of the moduli space $\overline{\mathcal{M}}_{g,n}$. However, we will discuss these models in a different direction, namely as a quantum field theory. As a formal matrix model,  the correlation functions of these models have a unique combinatorial/perturbative interpretation in the sense of Feynman diagrams. In particular, the additional structure (in comparison to ordinary quantum field theories) gives the possibility to compute exact expressions, which are resummations of infinitely many Feynman diagrams. For the easiest topologies, these exact expressions (given by implicitly defined functions) will be presented and discussed. If time remains, higher topologies are discussed by a connection to Topological Recursion.

Tue, 02 Nov 2021

15:30 - 16:30
L6

Unitary Invariant Ensembles and Symmetric Function Theory

Bhargavi Jonnadula
(University of Oxford)
Abstract

In this talk, we use tools from representation theory and symmetric function theory to compute correlations of eigenvalues of unitary invariant ensembles. This approach provides a route to write exact formulae for the correlations, which further allows us to extract large matrix asymptotics and study universal properties.

Tue, 19 Oct 2021

15:30 - 16:30
L6

TBA

Philip Cohen
(University of Oxford)
Further Information

POSTPONED TO A LATER DATE

Abstract

TBA

Tue, 12 Oct 2021

15:30 - 16:30
L6

Exact correlations in topological quantum chains

Nick Jones
(University of Oxford)
Abstract

Free fermion chains are particularly simple exactly solvable models. Despite this, typically one can find closed expressions for physically important correlators only in certain asymptotic limits. For a particular class of chains, I will show that we can apply Day's formula and Gorodetsky's formula for Toeplitz determinants with rational generating function. This leads to simple closed expressions for determinantal order parameters and the characteristic polynomial of the correlation matrix. The latter result allows us to prove that the ground state of the chain has an exact matrix-product state representation.

Tue, 25 Feb 2020
14:00
L6

Coordinate Deletion

Eero Räty
(Cambridge)
Abstract

For a family $A$ in $\{0,...,k\}^n$, its deletion shadow is the set obtained from $A$ by deleting from any of its vectors one coordinate. Given the size of $A$, how should we choose $A$ to minimise its deletion shadow? And what happens if instead we may delete only a coordinate that is zero? We discuss these problems, and give an exact solution to the second problem.

Tue, 10 Mar 2020
14:00
L6

Cycles of length three and four in tournaments

Jonathan Noel
(Warwick)
Abstract

Given a tournament with $d{n \choose 3}$ cycles of length three, how many cycles of length four must there be? Linial and Morgenstern (2016) conjectured that the minimum is asymptotically attained by "blowing up" a transitive tournament and orienting the edges randomly within the parts. This is reminiscent of the tight examples for the famous Triangle and Clique Density Theorems of Razborov, Nikiforov and Reiher. We prove the conjecture for $d \geq \frac{1}{36}$ using spectral methods. We also show that the family of tight examples is more complex than expected and fully characterise it for $d \geq \frac{1}{16}$. Joint work with Timothy Chan, Andrzej Grzesik and Daniel Král'.

Tue, 03 Mar 2020
14:00
L6

Planar graphs: One graph to rule them all

Marthe Bonamy
(Bordeaux)
Abstract

Consider all planar graphs on n vertices. What is the smallest graph that contains them all as induced subgraphs? We provide an explicit construction of such a graph on $n^{4/3+o(1)}$ vertices, which improves upon the previous best upper bound of $n^{2+o(1)}$, obtained in 2007 by Gavoille and Labourel.

In this talk, we will gently introduce the audience to the notion of so-called universal graphs (graphs containing all graphs of a given family as induced subgraphs), and devote some time to a key lemma in the proof. That lemma comes from a recent breakthrough by Dujmovic et al. regarding the structure of planar graphs, and has already many interesting consequences - we hope the audience will be able to derive more. This is based on joint work with Cyril Gavoille and Michal Pilipczuk.

Subscribe to L6