Mon, 02 Mar 2020
15:45
L6

Obstructing isotopies between surfaces in four manifolds

Hannah Schwartz
(Max Planck Institute Bonn)
Abstract

We will first construct pairs of homotopic 2-spheres smoothly embedded in a 4-manifold that are smoothly equivalent (via an ambient diffeomorphism preserving homology) but not even topologically isotopic. Indeed, these examples show that Gabai's recent "4D Lightbulb Theorem" does not hold without the 2-torsion hypothesis. We will proceed to discuss two distinct ways of obstructing such an isotopy, as well as related invariants which can be used to obstruct an isotopy between pairs of properly embedded disks (rather than spheres) in a 4-manifold.

Mon, 24 Feb 2020
15:45
L6

Square pegs and non-orientable surfaces

Marco Golla
(Universite de Nantes)
Abstract

The square peg problem asks whether every Jordan curve in the
plane contains the vertices of a square. Inspired by Hugelmeyer's approach
for smooth curves, we give a topological proof for "locally 1-Lipschitz"
curves using 4-dimensional topology.

Fri, 10 Jan 2020
15:45
L6

TBA

Christian Blanchet
(Institut de Mathématiques de Jussieu (Paris 7))
Tue, 11 Feb 2020

15:30 - 16:30
L6

Unitary, Symplectic, and Orthogonal Moments of Moments

Emma Bailey
Abstract

The study of random matrix moments of moments has connections to number theory, combinatorics, and log-correlated fields. Our results give the leading order of these functions for integer moment parameters by exploiting connections with Gelfand-Tsetlin patterns and counts of lattice points in convex sets. This is joint work with Jon Keating and Theo Assiotis.

Mon, 03 Feb 2020
15:45
L6

The complexity of knot genus problem in 3-manifolds

Mehdi Yazdi
(Oxford University)
Abstract

The genus of a knot in a 3-manifold is defined to be the minimum genus of a compact, orientable surface bounding that knot, if such a surface exists. We consider the computational complexity of determining knot genus. Such problems have been studied by several mathematicians; among them are the works of Hass--Lagarias--Pippenger, Agol--Hass--Thurston, Agol and Lackenby. For a fixed 3-manifold the knot genus problem asks, given a knot K and an integer g, whether the genus of K is equal to g. In joint work with Lackenby, we prove that for any fixed, compact, orientable 3-manifold, the knot genus problem lies inNP, answering a question of Agol--Hass--Thurston from 2002. Previously this was known for rational homology 3-spheres by the work of Lackenby.

 

Tue, 28 Jan 2020
14:00
L6

Edge-sampling and modularity

Fiona Skerman
(Bristol University)
Abstract

Modularity is a function on graphs which is used in algorithms for community detection. For a given graph G, each partition of the vertices has a modularity score, with higher values indicating that the partition better captures community structure in $G$. The (max) modularity $q^\ast(G)$ of the graph $G$ is defined to be the maximum over all vertex partitions of the modularity score, and satisfies $0 \leq q^\ast(G) \leq 1$.

We analyse when community structure of an underlying graph can be determined from an observed subset of the graph. In a natural model where we suppose edges in an underlying graph $G$ appear with some probability in our observed graph $G'$ we describe how high a sampling probability we need to infer the community structure of the underlying graph.

Joint work with Colin McDiarmid.

Tue, 21 Jan 2020
14:00
L6

Extremal problems of long cycles in random graphs

Gal Kronenberg
(University of Oxford)
Abstract

In this talk, we consider the random version of some classical extremal problems in the context of long cycles. This type of problems can also be seen as random analogues of the Turán number of long cycles, established by Woodall in 1972.

For a graph $G$ on $n$ vertices and a graph $H$, denote by $\text{ex}(G,H)$ the maximal number of edges in an $H$-free subgraph of $G$. We consider a random graph $G\sim G(n,p)$ where $p>C/n$, and determine the asymptotic value of $\text{ex}(G,C_t)$, for every $A\log(n)< t< (1- \varepsilon)n$. The behaviour of $\text{ex}(G,C_t)$ can depend substantially on the parity of $t$. In particular, our results match the classical result of Woodall, and demonstrate the transference principle in the context of long cycles.

Using similar techniques, we also prove a robustness-type result, showing the likely existence of cycles of prescribed lengths in a random subgraph of a graph with a nearly optimal density (a nearly ''Woodall graph"). If time permits, we will present some connections to size-Ramsey numbers of long cycles.

Based on joint works with Michael Krivelevich and Adva Mond.

Mon, 27 Jan 2020
15:45
L6

Commensurable coHopficity and hyperbolic groups

Daniel Woodhouse
(Oxford University)
Abstract


A broad challenge in the theory of finitely generated groups is to understand their subgroups. A group is commensurably coHopfian if its finite index subgroups are distinct from its infinite index subgroups (that is to say not abstractly isomorphic). We will focus primarily on hyperbolic groups, and give the first examples of one-ended hyperbolic groups that are not commensurably coHopfian.
This is joint work with Emily Stark.
 

Mon, 20 Jan 2020
15:45
L6

Algorithms for infinite linear groups: methods and applications

Alla Detinko
(Mathematics Dept., University of Hull)
Abstract

In this talk we will survey a novel domain of computational group theory: computing with linear groups over infinite fields.  We will provide an introduction to the area, and will discuss available methods and algorithms. Special consideration is given to algorithms for Zariski dense subgroups. This includes a computer realization of the strong approximation theorem, and algorithms for arithmetic groups. We illustrate applications of our methods to the solution of problems further afield by computer experimentation.

Tue, 10 Mar 2020

15:30 - 16:30
L6

Random matrices, random Young diagrams, and some random operators

Sasha Sodin
(Queen Mary University of London)
Abstract

The rows of a Young diagram chosen at random with respect to the Plancherel measure are known to share some features with the eigenvalues of the Gaussian Unitary Ensemble. We shall discuss several ideas, going back to the work of Kerov and developed by Biane and by Okounkov, which to some extent clarify this similarity. Partially based on joint work with Jeong and on joint works in progress with Feldheim and Jeong and with Täufer.

Subscribe to L6