Tue, 30 Sep 2025

15:00 - 16:00
L6

Dimension liftings for quantum computation of partial differential equations and related problems

Prof Shi Jin
(Shanghai Jiao Tong University)
Abstract

Quantum computers are designed based on quantum mechanics principle, they are most suitable to solve the Schrodinger equation, and linear PDEs (and ODEs) evolved by unitary operators.  It is important to  to explore whether other problems in scientific computing, such as ODEs, PDEs, and  linear algebra that arise in both classical and quantum systems which are not unitary evolution,  can be handled by quantum computers.  

We will present a systematic way to develop quantum simulation algorithms for general differential equations. Our basic framework is dimension lifting, that transfers non-autonomous ODEs/PDEs systems to autonomous ones, nonlinear PDEs to linear ones, and linear ones to Schrodinger type PDEs—coined “Schrodingerization”—with uniform evolutions. Our formulation allows both qubit and qumode (continuous-variable) formulations, and their hybridizations, and provides the foundation for analog quantum computing which are easier to realize in the near term. We will also discuss  dimension lifting techniques for quantum simulation of stochastic DEs and PDEs with fractional derivatives. 

Tue, 25 Nov 2025
14:00
L6

Categories of smooth representations of p-adic SL_3 in natural characteristic

Adam Jones
(Cambridge )
Abstract

Adam Jones will explore the relationship between the category of smooth representations of a semisimple p-adic Lie group G and the module category over its associated pro-p Iwahori-Hecke algebra via the canonical invariance adjunction. This relationship is well understood in characteristic 0, in fact it yields a category equivalence equivalence, but in characteristic p it is very mysterious and largely defies understanding. We will explore methods of constructing an appropriate subcategory of Hecke modules which is well behaved under the adjunction, and which can be shown to contain all parabolic inductions. He will give examples of this yielding results when G has rank 1, and more recently when G = SL_3 in certain cases.

Tue, 04 Nov 2025
14:00
L6

Stacks in Derived Bornological Geometry

Rhiannon Savage
(UCL )
Abstract

Recent foundational work by Ben-Bassat, Kelly, and Kremnitzer describes a model for derived analytic geometry as homotopical geometry relative to the infinity category of simplicial commutative complete bornological rings. In this talk, Rhiannon Savage will discuss a representability theorem for derived stacks in these contexts and will set out some new foundations for derived smooth geometry. Rhiannon will also briefly discuss the representability of the derived moduli stack of non-linear elliptic partial differential equations by an object we call a derived C∞-bornological affine scheme.

Tue, 14 Oct 2025
14:00
L6

The Laplace Transform on Lie Groups: A Representation-Theoretical Perspective

Ali Baklouti
(University of SFAX Tunisia)
Abstract

In this talk, I will present a representation-theoretical approach to constructing a non-commutative analogue of the classical Laplace transform on Lie groups. I will begin by discussing the motivations for such a generalization, emphasizing its connections with harmonic analysis, probability theory, and the study of evolution equations on non-commutative spaces. I will also outline some of the key challenges that arise when extending the Laplace transform to the setting of Lie groups, including the non-commutativity of the group operation and the complexity of its dual space.

The main part of the talk will focus on an explicit construction of the Laplace transform in the framework of connected, simply connected nilpotent Lie groups. This construction relies on Kirillov’s orbit method, which provides a powerful bridge between the geometry of coadjoint orbits and the representation theory of nilpotent groups.

As an application, I will describe an operator-theoretic analogue of the classical Müntz–Szász theorem, establishing a density result for a family of generalized polynomials in associated with the group setting. This result highlights the strength of the representation-theoretical approach and its potential for solving classical approximation problems in a non-commutative context.

Tue, 24 Feb 2026
15:00
L6

TBC

Cameron Rudd
((Mathematical Institute University of Oxford))
Abstract

to follow

Tue, 10 Feb 2026
15:00
L6

The kernel knows

Nansen Petrosyan
Abstract
For a graph product of groups, the canonical map to the direct product of the vertex groups has a kernel whose structure is not immediately apparent. Remarkably, this kernel turns out to be oblivious to most of the algebra one builds into the construction, yet it is sensitive to the underlying combinatorics.
This has applications to the Baum--Connes conjecture, Brown's question, the Eilenberg--Ganea conjecture and inheritance properties of graph products of groups. 
Nansen Petrosyan will survey known results and discuss joint work with Ian Leary.
Tue, 03 Feb 2026
15:00
L6

Divergence in groups with micro-supported actions

Letizia Issini
Abstract
The divergence of a group is a quasi-isometry invariant that measures how difficult it is to connect two points while avoiding a ball around the identity. It is easy to see that it is linear for direct products and deduce the same result for branch groups (a class of groups acting on rooted trees, for example the Grigorchuk group). I will discuss divergence for weakly branch groups, in particular the Basilica group. I will also present a generalisation for certain groups admitting a micro-supported action on a Hausdorff topological space, i.e containing elements with arbitrarily small support.
Joint work in progress with D. Francoeur and T. Nagnibeda
Tue, 27 Jan 2026
15:00
L6

JSJ decomposition and generalized Baumslag-Solitar groups

Dario Ascari
Abstract

The theory of JSJ decomposition plays a key role in the classification of hyperbolic groups, in analogy with the case of 3-manifolds. While this theory can be extended to larger families of groups, the JSJ decomposition displays significant flexibility in general, making a complete understanding of its behaviour more challenging. In this talk, Dario Ascari explores this flexibility, with an emphasis on the case of generalized Baumslag-Solitar groups.

Tue, 20 Jan 2026
15:00
L6

Waist inequalities on groups and spaces

David Hume
Abstract
The waist inequality is a topologist's version of the rank-nullity theorem in linear algebra. It states that for any continuous map from a ball of radius $R$ in $\mathbb R^n$ to $\mathbb R^q$ there is a point in $\mathbb R^q$ whose preimage is comparable in size to the ball of radius $R$ in $\mathbb R^{n-q}$.
 
There are now several proofs of this remarkable result. This talk will focus on a particular "coarse" version due to Gromov that lends itself to applications in coarse geometry and geometric group theory. I will formally introduce these new tools, explain the (few) things we already know about them, and give many suggestions for things we really ought to know.
Subscribe to L6