Wed, 14 May 2025
16:00
L6

Coarse cohomology of metric spaces and quasimorphisms

William Thomas
(University of Oxford)
Abstract

In this talk, we give an accessible introduction to the theory of coarse cohomology of metric spaces in the sense of Margolis, which we present in direct analogy with group cohomology for discrete groups. We explain how this yields the robust notion of coarse cohomological dimension (due to Margolis), which is a genuine quasi-isometry invariant of metric spaces generalising the cohomological dimension of groups when the latter is finite. We then give applications to geometric properties of quasimorphisms and motivate how such considerations might be useful in the setting of non-positively curved groups. This is joint reading/work with Paula Heim.

Thu, 22 May 2025

12:00 - 13:30
L6

Superconformal algebras from superconformal structures

Ingmar Saberi
(Ludwig-Maximilians-Universität München)
Abstract

The notion of a superconformal structure on a supermanifold goes back some forty years. I will discuss some recent work that shows how these structures and their deformations govern supersymmetric and superconformal field theories in geometric fashion. A superconformal structure equips a supermanifold with a sheaf of dg commutative algebras; the tangent sheaf of this dg ringed space reproduces the Weyl multiplet of conformal supergravity (equivalently, the superconformal stress tensor multiplet), in any dimension and with any amount of supersymmetry. This construction is uniform under twists, and thus provides a classification of relations between superconformal theories, chiral algebras, higher Virasoro algebras, and more exotic examples.
 

Tue, 13 May 2025
15:00
L6

From Teichmüller space to Outer space: on the geometry of handlebody groups

Ric Wade
Abstract

The mapping class group a solid handlebody of genus g sits between mapping class groups of surfaces and Out(F_n), in the sense there is an injective map to the mapping class group of the boundary and a surjective map to Out(F_g) via the action on the fundamental group. Similar behaviour happens with actions on associated spaces, such curve complexes and Teichmuller space. I’ll give an expository talk on this, partly in the context of our proof with Petersen that handlebody groups are virtual duality groups, and partly in the context of a problem list on handlebody groups written with Andrew, Hensel, and Hughes.

Wed, 21 May 2025
16:00
L6

(Seminar cancelled) Generalized Tate-Shafarevich groups over function fields

Tamás Szamuely
(Università degli studi di Pisa)
Abstract

Given a smooth geometrically connected curve C over a perfect field k and a smooth commutative group scheme G defined over the function field K of C, one can consider isomorphism classes of G-torsors locally trivial at completions of K coming from closed points of C. They form a generalized Tate-Shafarevich group which specializes to the classical one in the case when k is finite. Recently, these groups have been studied over other base fields k as well, for instance p-adic or number fields. Surprisingly, finiteness can be proven in some cases but there are also quite a few open questions which I plan to discuss  in my talk.

Thu, 13 Mar 2025
12:00
L6

Mixed-type Partial Differential Equations and the Isometric Immersions Problem

Siran Li
(Shanghai Jiao Tong University)
Abstract

This talk is about a classical problem in differential geometry and global analysis: the isometric immersions of Riemannian manifolds into Euclidean spaces. We focus on the PDE approach to isometric immersions, i.e., the analysis of Gauss--Codazzi--Ricci equations, especially in the regime of low Sobolev regularity. Such equations are not purely elliptic, parabolic, or hyperbolic in general, hence calling for analytical tools for PDEs of mixed types. We discuss various recent contributions -- in line with the pioneering works by G.-Q. Chen, M. Slemrod, and D. Wang [Proc. Amer. Math. Soc. (2010); Comm. Math. Phys. (2010)] -- on the weak continuity of Gauss--Codazzi--Ricci equations, the weak stability of isometric immersions, and the fundamental theorem of submanifold theory with low regularity. Two mixed-type PDE techniques are emphasised throughout these developments: the method of compensated compactness and the theory of Coulomb--Uhlenbeck gauges.


 
Mon, 10 Mar 2025
13:00
L6

Higher-form Symmetries in Linear Gravity

Adam Kmec
Abstract

Recently, work has been done to understand higher-form symmetries in linear gravity. Just like Maxwell theory, which has both electric and magnetic U(1) higher form symmetries, linearised gravity exhibits analogous structure. The authors of
[https://arxiv.org/pdf/2409.00178] investigate electric and magnetic higher form symmetries in linearised gravity, which correspond to shift symmetries of the graviton and the dual graviton respectively. By attempting to gauge the two symmetries, the authors investigate the mixed ’t Hooft anomalies anomaly structure of linearised gravity. Furthermore, if a specific shift symmetry is considered, the corresponding charges are related to Roger Penrose's quasi-local charge construction.

Based on: [https://arxiv.org/pdf/2410.08720][https://arxiv.org/pdf/2409.00178][https://arxiv.org/pdf/2401.17361]

Thu, 13 Mar 2025
16:00
L6

Parametrising complete intersections

Jakub Wiaterek
(University of Oxford)
Abstract

For some values of degrees d=(d_1,...,d_c), we construct a compactification of a Hilbert scheme of complete intersections of type d. We present both a quotient and a direct construction. Then we work towards the construction of a quasiprojective coarse moduli space of smooth complete intersections via Geometric Invariant Theory.

Tue, 29 Apr 2025
16:00
L6

Thick points of the planar Gaussian free field 

Ellen Powell
(Durham University)
Abstract
The Gaussian Free Field (GFF) in two dimensions is a random field which can be viewed as a multidimensional analogue of Brownian motion, and appears as a universal scaling limit of a class of discrete height functions. Thick points of the GFF are points where, roughly speaking, the field is atypically high. They provide key insights into the geometric properties of the field, and are the basis for construction of important associated objects in random planar geometry. The set of thick points with thickness level a is a fractal set with Hausdorff dimension 2-a^2/2. In this talk I will discuss another fundamental property, namely, that the set is almost surely disconnected for all non-zero a. This is based on joint work with Juhan Aru and Léonie Papon, and uses a remarkable relationship between the GFF and the "conformal loop ensemble" of parameter 4. 
Tue, 13 May 2025
16:00
L6

Random matrix theory and optimal transport

Bence Borda
(University of Sussex)
Abstract

The Wasserstein metric originates in the theory of optimal transport, and among many other applications, it provides a natural way to measure how evenly distributed a finite point set is. We give a survey of classical and more recent results that describe the behaviour of some random point processes in Wasserstein metric, including the eigenvalues of some random matrix models, and explain the connection to the logarithm of the characteristic polynomial of a random unitary matrix. We also discuss a simple random walk model on the unit circle defined in terms of a quadratic irrational number, which turns out to be related to surprisingly deep arithmetic properties of real quadratic fields.

Tue, 20 May 2025
16:00
L6

Approaching the two-point Chowla conjecture via matrices

Cedric Pilatte
(University of Oxford)
Abstract

The two-point Chowla conjecture predicts that $\sum_{x<n<2x} \lambda(n)\lambda(n+1) = o(x)$ as $x\to \infty$, where $\lambda$ is the Liouville function (a $\{\pm 1\}$-valued multiplicative function encoding the parity of the number of prime factors). While this remains an open problem, weaker versions of this conjecture are known. In this talk, we outline an approach initiated by Helfgott and Radziwill, which reformulates the problem in terms of bounding the eigenvalues of a certain matrix.

Subscribe to L6