Thu, 01 Nov 2018

16:00 - 17:00
L6

Shimura varieties at level Gamma_1(p^{\infty}) and Galois representations

Daniel Gulotta
(Oxford University)
Abstract

Let F be a totally real or CM number field.  Scholze has constructed Galois representations associated with torsion classes in the cohomology of locally symmetric spaces for GL_n(F).  We show that the nilpotent ideal appearing in Scholze's construction can be removed when F splits completely at the relevant prime.  As a key component of the proof, we show that the compactly supported cohomology of certain unitary and symplectic Shimura varieties with level  Gamma_1(p^{\infty}) vanishes above the middle degree. This is joint work with Ana Caraiani, Chi-Yun Hsu, Christian Johansson, Lucia Mocz, Emanuel Reinecke, and Sheng-Chi Shih. 

Thu, 25 Oct 2018

16:00 - 17:00
L6

Correlations of multiplicative functions at almost all scales

Joni Teräväinen
(Oxford University)
Abstract


Understanding how shifts of multiplicative functions correlate with each other is a central question in multiplicative number theory. A well-known conjecture of Elliott predicts that there should be no correlation between shifted multiplicative functions unless the functions involved are ‘pretentious functions’ in a certain precise sense. The Elliott conjecture implies as a special case the famous Chowla conjecture on shifted products of the Möbius function.

In the last few years, there has been a lot of exciting progress on the Chowla and Elliott conjectures, and we give an overview of this. Nearly all of the previously obtained results have concerned correlations that are weighted logarithmically, and it is an interesting question whether one can remove these logarithmic weights. We show that one can indeed remove logarithmic averaging from the known results on the Chowla and Elliott conjectures, provided that one restricts to almost all scales in a suitable sense.

This is joint work with Terry Tao.

Mon, 15 Oct 2018
15:45
L6

Formal Moduli Problems via Partition Lie Algebras

Lukas Brantner
(Oxford University)
Abstract

If k is a field of characteristic zero, a theorem of Lurie and Pridham establishes an equivalence between formal moduli problems and differential graded Lie algebras over k. We generalise this equivalence in two different ways to arbitrary ground fields by using “partition Lie algebras”. These mysterious new gadgets are intimately related to the genuine equivariant topology of the partition complex, which allows us to access the operations acting on their homotopy groups (relying on earlier work of Dyer-Lashof, Priddy, Goerss, and Arone-B.). This is joint work with Mathew.

Tue, 09 Oct 2018
14:30
L6

Subsets of Cayley graphs that induce many edges

Oliver Janzer
(Cambridge)
Abstract

Let $G$ be a regular graph of degree $d$ and let $A\subset V(G)$. Say that $A$ is $\eta$-closed if the average degree of the subgraph induced by $A$ is at least $\eta d$. This says that if we choose a random vertex $x\in A$ and a random neighbour $y$ of $x$, then the probability that $y\in A$ is at least $\eta$. In recent joint work with Tim Gowers, we were aiming to obtain a qualitative description of closed subsets of the Cayley graph $\Gamma$ whose vertex set is $\mathbb{F}_2^{n_1}\otimes \dots \otimes \mathbb{F}_2^{n_d}$ with two vertices joined by an edge if their difference is of the form $u_1\otimes \cdots \otimes u_d$. For the matrix case (that is, when $d=2$), such a description was obtained by Khot, Minzer and Safra, a breakthrough that completed the proof of the 2-to-2 conjecture. We have formulated a conjecture for higher dimensions, and proved it in an important special case. In this talk, I will sketch this proof. Also, we have identified a statement about $\eta$-closed sets in Cayley graphs on arbitrary finite Abelian groups that implies the conjecture and can be considered as a "highly asymmetric Balog-Szemerédi-Gowers theorem" when it holds. I will present an example to show that this statement is not true for an arbitrary Cayley graph. It remains to decide whether the statement can be proved for the Cayley graph $\Gamma$.

Thu, 11 Oct 2018

16:00 - 17:00
L6

Polya’s Program for the Riemann Hypothesis and Related Problems

Ken Ono
(Emory)
Abstract

In 1927 Polya proved that the Riemann Hypothesis is equivalent to the hyperbolicity of Jensen polynomials for Riemann’s Xi-function. This hyperbolicity has only been proved for degrees d=1, 2, 3. For each d we prove the hyperbolicity of all but (perhaps) finitely many Jensen polynomials. We obtain a general theorem which models such polynomials by Hermite polynomials. This theorem also allows us to prove a conjecture of Chen, Jia, and Wang on the partition function. This result can be thought of as a proof of GUE for the Riemann zeta function in derivative aspect. This is joint work with Michael Griffin, Larry Rolen, and Don Zagier.
 

Thu, 18 Oct 2018

16:00 - 17:00
L6

Multizeta and related algebraic structures in the function field arithmetic

Dinesh Thakur
(Rochester)
Abstract

We will see some results and conjectures on the zeta and multizeta values in the function field context, and see how they relate to homological-homotopical objects, such as t-motives, iterated extensions, and to Hopf algebras, big Galois representations.

Mon, 22 Oct 2018
15:45
L6

Directed algebraic topology

Lisbeth Fajstrup
(Aalborg University)
Abstract

In directed algebraic topology, a topological space is endowed 
with an extra structure, a selected subset of the paths called the 
directed paths or the d-structure. The subset has to contain the 
constant paths, be closed under concatenation and non-decreasing 
reparametrization. A space with a d-structure is a d-space.
If the space has a partial order, the paths increasing wrt. that order 
form a d-structure, but the circle with counter clockwise paths as the 
d-structure is a prominent example without an underlying partial order.
Dipaths are dihomotopic if there is a one-parameter family of directed 
paths connecting them. Since in general dipaths do not have inverses, 
instead of fundamental groups (or groupoids), there is a fundamental 
category. So already at this stage, the algebra is less desirable than 
for topological spaces.
We will give examples of what is currently known in the area, the kind 
of methods used and the problems and questions which need answering - in 
particular with applications in computer science in mind.
 

Mon, 05 Nov 2018
15:45
L6

Random graphs with constant r-balls

David Ellis
(Queen Mary University of London)
Abstract


Let F be a fixed infinite, vertex-transitive graph. We say a graph G is `r-locally F' if for every vertex v of G, the ball of radius r and centre v in G is isometric to the ball of radius r in F. For each positive integer n, let G_n = G_n(F,r) be a graph chosen uniformly at random from the set of all unlabelled, n-vertex graphs that are r-locally F. We investigate the properties that the random graph G_n has with high probability --- i.e., how these properties depend upon the fixed graph F. 
We show that if F is a Cayley graph of a torsion-free group of polynomial growth, then there exists a positive integer r_0 such that for every integer r at least r_0, with high probability the random graph G_n = G_n(F,r) defined above has largest component of size between n^{c_1} and n^{c_2}, where 0 < c_1 < c_2  < 1 are constants depending upon F alone, and moreover that G_n has at least exp(poly(n)) automorphisms. This contrasts sharply with the random d-regular graph G_n(d) (which corresponds to the case where F is replaced by the infinite d-regular tree).
Our proofs use a mixture of results and techniques from group theory, geometry and combinatorics, including a recent and beautiful `rigidity' result of De La Salle and Tessera.
We obtain somewhat more precise results in the case where F is L^d (the standard Cayley graph of Z^d): for example, we obtain quite precise estimates on the number of n-vertex graphs that are r-locally L^d, for r at least linear in d, using classical results of Bieberbach on crystallographic groups.
Many intriguing open problems remain: concerning groups with torsion, groups with faster than polynomial growth, and what happens for more general structures than graphs.
This is joint work with Itai Benjamini (Weizmann Institute).
 

Mon, 26 Nov 2018
17:00
L6

Lattices and correction terms

Kyle Larsson
(Alfréd Rényi Institute of Mathematics)
Abstract

 I will introduce two obstructions for a rational homology 3-sphere to smoothly bound a rational homology 4-ball- one coming from Donaldson's theorem on intersection forms of definite 4-manifolds, and the other coming from correction terms in Heegaard Floer homology. If L is a nonunimodular definite lattice, then using a theorem of Elkies we will show that whether L embeds in the standard definite lattice of the same rank is completely determined by a collection of lattice correction terms, one for each metabolizing subgroup of the discriminant group. As a topological application this gives a rephrasing of the obstruction coming from Donaldson's theorem. Furthermore, from this perspective it is easy to see that if the obstruction to bounding a rational homology ball coming from Heegaard Floer correction terms vanishes, then (under some mild hypotheses) the obstruction from Donaldson's theorem vanishes too.

Mon, 12 Nov 2018
15:45
L6

Geodesic Currents and Counting Curves

Viveka Erlandsson
(Bristol University)
Abstract

Two curves in a closed hyperbolic surface of genus g are of the same type if they differ by a mapping class. Mirzakhani studied the number of curves of given type and of hyperbolic length bounded by L, showing that as L grows, it is asymptotic to a constant times L^{6g-6}. In this talk I will discuss a generalization of this result, allowing for other notions of length. For example, the same asymptotics hold if we put any (singular) Riemannian metric on the surface. The main ingredient in this generalization is to study measures on the space of geodesic currents.

Subscribe to L6