Mon, 12 Mar 2018
12:45
L6

Machine Learning, String Theory, and Geometry

Jim Halverson
(Northeastern University)
Abstract

Breakthroughs in machine learning have led to impressive results in numerous fields in recent years. I will review some of the best-known results on the computer science side, provide simple ways to think about the associated techniques, discuss possible applications in string theory, and present some applications in string theory where they already exist. One promising direction is using machine learning to generate conjectures that are then proven by humans as theorems. This method, sometimes referred to as intelligible AI, will be exemplified in an enormous ensemble of F-theory geometries that will be featured throughout the talk.

 
 
Mon, 14 May 2018
15:45
L6

Lie groupoids and index theory

Georges Skandalis
(Paris VII)
Abstract

My talk is based on joint work with Claire Debord (Univ. Auvergne).
We will explain why Lie groupoids are very naturally linked to Atiyah-Singer index theory.
In our approach -originating from ideas of Connes, various examples of Lie groupoids
- allow to generalize index problems,
- can be used to construct the index of pseudodifferential operators without using the pseudodifferential calculus,
- give rise to proofs of index theorems, 
- can be used to construct the pseudodifferential calculus.

Tue, 13 Feb 2018
14:30
L6

On the hard sphere model and sphere packing in high dimensions

Matthew Jenssen
(Oxford University)
Abstract

We give an alternative, statistical physics based proof of the Ω(d2^{-d}) lower bound for the maximum sphere packing density in dimension d by showing that a random configuration from the hard sphere model has this density in expectation. While the leading constant we achieve is not the best known, we do obtain additional geometric information: we prove a lower bound on the entropy density of sphere packings at this density, a measure of how plentiful such packings are. This is joint work with Felix Joos and Will Perkins.

Thu, 08 Mar 2018
16:00
L6

Permuting F_q using a density method

Giacomo Micheli
(Oxford)
Abstract

The construction of permutation functions of a finite field is a task of great interest in cryptography and coding theory. In this talk we describe a method which combines Chebotarev density theorem with elementary group theory to produce permutation rational functions over a finite field F_q. Our method is entirely constructive and as a corollary we get the classification of permutation polynomials up to degree 4 over any finite field of odd characteristic.

This is a joint work with Andrea Ferraguti.
 

Thu, 01 Mar 2018
16:00
L6

Character varieties and (\varphi_L,\Gamma_L)-modules

Peter Schneider
(Münster)
Abstract

After reviewing old work with Teitelbaum, in which we constructed the character variety X of the additive group o_L in a finite extension L/Q_p and established the Fourier isomorphism for the distribution algebra of o_L, I will briefly report on more recent work with Berger and Xie, in which we establish the theory of (\varphi_L,\Gamma_L)-modules over X and relate it to Galois representations. Then I will discuss an ongoing project with Venjakob. Our goal is to use this theory over X for Iwasawa theory.

Wed, 11 Apr 2018
15:45
L6

Ergodic Theory of Interval Exchange Transformations

Howard Masur
(Chicago)
Abstract

An interval exchange transformation is a map  of an 
interval to 
itself that rearranges a finite number of intervals by translations.  They 
appear among other places in the 
subject of rational billiards and flows of translation surfaces. An 
interesting phenomenon is that an IET may have dense orbits that are not 
uniformly distributed, a property known as non unique ergodicity.  I will 
talk about this phenomenon and present some new results about how common 
this is. Joint work with Jon Chaika.

Thu, 15 Feb 2018
16:00
L6

Moments of cubic L-functions over function fields

Alexandra Florea
(Bristol)
Abstract

I will talk about some recent work with Chantal David and Matilde Lalin about the mean value of L-functions associated to cubic characters over F_q[t] when q=1 (mod 3). I will explain how to obtain an asymptotic formula with a (maybe a little surprising) main term, which relies on using results from the theory of metaplectic Eisenstein series about cancellation in averages of cubic Gauss sums over functions fields.

Tue, 30 Jan 2018
14:30
L6

Embedding simply connected 2-complexes in 3-space

Johannes Carmesin
(Cambridge)
Abstract

We characterise the embeddability of simply connected 2-dimensional simplicial complexes in 3-space in a way analogous to Kuratowski’s characterisation of graph planarity, by excluded minors. This answers questions of Lovász, Pardon and Wagner.

 

Tue, 23 Jan 2018
14:30
L6

Gyárfás-Sumner meets Erdős-Hajnal

Paul Seymour
(Princeton)
Abstract

The Gyárfás-Sumner conjecture says that every graph with huge (enough) chromatic number and bounded clique number contains any given forest as an induced subgraph. The Erdős-Hajnal conjecture says that for every graph H, all graphs not containing H as an induced subgraph have a clique or stable set of polynomial size. This talk is about a third problem related to both of these, the following. Say an n-vertex graph is "c-coherent" if every vertex has degree <cn, and every two disjoint vertex subsets of size at least cn have an edge between them. To prove a given graph H satisfies the Erdős-Hajnal conjecture, it is enough to prove H satisfies the conjecture in all c-coherent graphs and their complements, where c>0 is fixed and as small as we like. But for some graphs H, all c-coherent graphs contain H if c is small enough, so half of the task is done for free. Which graphs H have this property? Paths do (a theorem of Bousquet, Lagoutte, and Thomassé), and non-forests don't. Maybe all forests do? In other words, do all c-coherent graphs with c small enough contain any given forest as an induced subgraph? That question is the topic of the talk. It looks much like the Gyárfás-Sumner conjecture, but it seems easier, and there are already several pretty results. For instance the conjecture is true for all subdivided caterpillars (which is more than we know for Gyárfás-Sumner), and all trees of radius two. Joint work with Maria Chudnovsky, Jacob Fox, Anita Liebenau, Marcin Pilipczuk, Alex Scott and Sophie Spirkl.

Tue, 16 Jan 2018
14:30
L6

The exact minimum number of triangles in a graph of given order and size

Katherine Staden
(Oxford)
Abstract

A famous theorem of Mantel from 1907 states that every n-vertex graph with more than n^2/4 edges contains at least one triangle. In the 50s, Erdős asked for a quantitative version of this statement: for every n and e, how many triangles must an n-vertex e-edge graph contain?

This question has received a great deal of attention, and a long series of partial results culminated in an asymptotic solution by Razborov, extended to larger cliques by Nikiforov and Reiher. Currently, an exact solution is only known for a small range of edge densities, due to Lovász and Simonovits. In this talk, I will discuss the history of the problem and recent work which gives an exact solution for almost the entire range of edge densities. This is joint work with Hong Liu and Oleg Pikhurko.

Subscribe to L6