Mon, 23 Apr 2018
15:45
L6

Growth gap in hyperbolic groups and amenability

Remi Coulon
(Rennes)
Abstract

(joint work with Françoise Dal'Bo and Andrea Sambusetti)

Given a finitely generated group G acting properly on a metric space X, the exponential growth rate of G with respect to X measures "how big" the orbits of G are. If H is a subgroup of G, its exponential growth rate is bounded above by the one of G. In this work we are interested in the following question: what can we say if H and G have the same exponential growth rate? This problem has both a combinatorial and a geometric origin. For the combinatorial part, Grigorchuck and Cohen proved in the 80's that a group Q = F/N (written as a quotient of the free group) is amenable if and only if N and F have the same exponential growth rate (with respect to the word length). About the same time, Brooks gave a geometric interpretation of Kesten's amenability criterion in terms of the bottom of the spectrum of the Laplace operator. He obtained in this way a statement analogue to the one of Grigorchuck and Cohen for the deck automorphism group of the cover of certain compact hyperbolic manifolds. These works initiated many fruitful developments in geometry, dynamics and group theory. We focus here one the class of Gromov hyperbolic groups and propose a framework that encompasses both the combinatorial and the geometric point of view. More precisely we prove that if G is a hyperbolic group acting properly co-compactly on a metric space X which is either a Cayley graph of G or a CAT(-1) space, then the growth rate of H and G coincide if and only if H is co-amenable in G.  In addition if G has Kazhdan property (T) we prove that there is a gap between the growth rate of G and the one of its infinite index subgroups.

Wed, 16 May 2018

16:00 - 17:00
L6

On some connections between domain geometry and blow-up type in a nonlinear heat equation

Mikołaj Sierżęga
(University of Warsaw)
Abstract

The Fujita equation $u_{t}=\Delta u+u^{p}$, $p>1$, has been a canonical blow-up model for more than half a century. A great deal is known about the singularity formation under a variety of conditions. In particular we know that blow-up behaviour falls broadly into two categories, namely Type I and Type II. The former is generic and stable while the latter is rare and highly unstable. One of the central results in the field states that in the Sobolev subcritical regime, $1<p<\frac{n+2}{n-2}$, $n\geq 3$, only type I is possible whenever the domain is \emph{convex} in $\mathbb{R}^n$. Despite considerable effort the requirement of convexity has not been lifted and it is not clear whether this is an artefact of the methodology or whether the geometry of the domain may actually affect the blow-up type. In my talk I will discuss how the question of the blow-up type for non-convex domains is intimately related to the validity of some Li-Yau-Hamilton inequalities.

Fri, 01 Jun 2018

13:00 - 14:00
L6

Multilevel Monte Carlo for Estimating Risk Measures

Mike Giles
Abstract

Joint work with Abdul-Lateef Haji-Ali

This talk will discuss efficient numerical methods for estimating the probability of a large portfolio loss, and associated risk measures such as VaR and CVaR. These involve nested expectations, and following Bujok, Hambly & Reisinger (2015) we use the number of samples for the inner conditional expectation as the key approximation parameter in the Multilevel Monte Carlo formulation. The main difference in this case is the indicator function in the definition of the probability. Here we build on previous work by Gordy & Juneja (2010) who analyse the use of a fixed number of inner samples, and Broadie, Du & Moallemi (2011) who develop and analyse an adaptive algorithm. I will present the algorithm, outline the main theoretical results and give the numerical results for a representative model problem. I will also discuss the extension to real portfolios with a large number of options based on multiple underlying assets.

Fri, 18 May 2018

13:00 - 14:00
L6

A probabilistic approach to non-parametric local volatility

Martin Tegner
Abstract

The local volatility model is a celebrated model widely used for pricing and hedging financial derivatives. While the model’s main appeal is its capability of reproducing any given surface of observed option prices—it provides a perfect fit—the essential component of the model is a latent function which can only be unambiguously determined in the limit of infinite data. To (re)construct this function, numerous calibration methods have been suggested involving steps of interpolation and extrapolation, most often of parametric form and with point-estimates as result. We seek to look at the calibration problem in a probabilistic framework with a nonparametric approach based on Gaussian process priors. This immediately gives a way of encoding prior believes about the local volatility function, and a hypothesis model which is highly flexible whilst being prone to overfitting. Besides providing a method for calibrating a (range of) point-estimate, we seek to draw posterior inference on the distribution over local volatility to better understand the uncertainty attached with the calibration. Further, we seek to understand dynamical properties of local volatility by augmenting the hypothesis space with a time dimension. Ideally, this gives us means of inferring predictive distributions not only locally, but also for entire surfaces forward in time.

Fri, 04 May 2018

13:00 - 14:00
L6

Talks by Phd Students

Leandro Sánchez Betancourt and Jasdeep Kalsi
Abstract

Leandro Sánchez Betancourt
--------------------------
The Cost of Latency: Improving Fill Ratios in Foreign Exchange Markets

Latency is the time delay between an exchange streaming market data to a trader, the trader processing information and deciding to trade, and the exchange receiving the order from the trader.  Liquidity takers  face  a  moving target problem as a consequence of their latency in the marketplace -- they send marketable orders that aim at a price and quantity they observed in the LOB, but by the time their order was processed by the Exchange, prices (and/or quantities) may have worsened, so the  order  cannot  be  filled. If liquidity taking orders can walk the limit order book (LOB), then orders that arrive late may still be filled at worse prices. In this paper we show how to optimally choose the discretion of liquidity taking orders to walk the LOB. The optimal strategy balances the tradeoff between the costs of walking the LOB and targeting  a desired percentage of filled orders over a period of time.  We employ a proprietary data set of foreign exchange trades to analyze the performance of the strategy. Finally, we show the relationship between latency and the percentage of filled orders, and showcase the optimal strategy as an alternative investment to reduce latency.

Jasdeep Kalsi
-------------
An SPDE model for the Limit Order Book

I will introduce a microscopic model for the Limit Order Book in a static setting i.e. in between price movements. Here, order flow at different price levels is given by Poisson processes which depend on the relative price and the depth of the book. I will discuss how reflected SPDEs can be obtained as scaling limits of such models. This motivates an SPDE with reflection and a moving boundary as a model for the dynamic Order Book. An outline for how to prove existence and uniqueness for the equation will be presented, as well as some simple simulations of the model.

Tue, 20 Feb 2018
14:30
L6

More Designs

Peter Keevash
(University of Oxford)
Abstract

We generalise the existence of combinatorial designs to the setting of subset sums in lattices with coordinates indexed by labelled faces of simplicial complexes. This general framework includes the problem of decomposing hypergraphs with extra edge data, such as colours and orders, and so incorporates a wide range of variations on the basic design problem, notably Baranyai-type generalisations, such as resolvable hypergraph designs, large sets of hypergraph designs and decompositions of designs by designs. Our method also gives approximate counting results, which is new for many structures whose existence was previously known, such as high dimensional permutations or Sudoku squares.

Subscribe to L6