Tue, 24 Oct 2017
14:30
L6

Zero forcing in random and pseudorandom graphs

Nina Kamcev
(ETH Zurich)
Abstract

A subset S of initially infected vertices of a graph G is called forcing if we can infect the entire graph by iteratively applying the following process. At each step, any infected vertex which has a unique uninfected neighbour, infects this neighbour. The forcing number of G is the minimum cardinality of a forcing set in G. It was introduced independently as a bound for the minimum rank of a graph, and as a tool in quantum information theory.

The focus of this talk is on the forcing number of the random graph. Furthermore, we will state our bounds on the forcing number of pseudorandom graphs and related problems. The results are joint work with Thomas Kalinowski and Benny Sudakov.

Tue, 17 Oct 2017
14:30
L6

Intersecting Families of Permutations

Michelle Delcourt
(Birmingham University)
Abstract

Enumerating families of combinatorial objects with given properties and describing the typical structure of these objects are fundamental problems in extremal combinatorics. In this talk, we will investigate intersecting families of discrete structures in various settings, determining their typical structure as the size of the underlying ground set tends to infinity. Our new approach outlines a general framework for a number of similar problems; in particular, we prove analogous results for hypergraphs, permutations, and vector spaces using the same technique. This is joint work with József Balogh, Shagnik Das, Hong Liu, and Maryam Sharifzadeh.

Tue, 10 Oct 2017
14:30
L6

Random Triangles in Random Graphs

Oliver Riordan
(Oxford University)
Abstract

Given a graph $G$, we can form a hypergraph $H$ whose edges correspond to the triangles in $G$. If $G$ is the standard Erdős-Rényi random graph with independent edges, then $H$ is random, but its edges are not independent, because of overlapping triangles. This is (presumably!) a major complication when proving results about triangles in random graphs.  However, it turns out that, for many purposes, we can treat the triangles as independent, in a one-sided sense (and losing something in the density): we can find an independent random hypergraph within the set of triangles. I will present two proofs, one of which generalizes to larger complete (and some non-complete) subgraphs.

Thu, 30 Nov 2017
16:00
L6

A Galois counting problem

Sam Chow
(York)
Abstract

We count monic quartic polynomials with prescribed Galois group, by box height. Among other things, we obtain the order of magnitude for  quartics, and show that non-quartics are dominated by reducibles. Tools include the geometry of numbers, diophantine approximation, the invariant theory of binary forms, and the determinant method. Joint with Rainer Dietmann.

Thu, 09 Nov 2017
16:00
L6

Probabilistic arithmetic geometry

Daniel Loughran
(Manchester)
Abstract

A famous theorem due to Erdős and Kac states that the number of prime divisors of an integer N behaves like a normal distribution. In this talk we consider analogues of this result in the setting of arithmetic geometry, and obtain probability distributions for questions related to local solubility of algebraic varieties. This is joint work with Efthymios Sofos.

Thu, 23 Nov 2017
16:00
L6

The fundamental theorem of Weil II (for curves) with ultra product coefficients

Anna Cadoret
(Université Paris 6 (IMJ-PRG))
Abstract

l-adic cohomology was built to provide an etale cohomology with coefficients in a field of characteristic 0. This, via the Grothendieck trace formula, gives  a cohomological interpretation of L-functions - a fundamental tool in Deligne's theory of weights developed in Weil II. Instead of l-adic coefficients one can consider coefficients in ultra products of finite fields. I will state the fundamental theorem of Weil II for curves in this setting and explain briefly what are the difficulties to overcome to adjust Deligne's proof. I will then discuss how this ultra product variant of Weil II allows to extend to arbitrary coefficients  previous results of Gabber and Hui, Tamagawa and myself for constant $\mathbb{Z}_\ell$-coefficients.  For instance,  it implies that, in an $E$-rational compatible system of smooth $\overline{\mathbb{Q}}_\ell$-sheaves all what is true for $\overline{\mathbb{Q}}_\ell$-coefficients (semi simplicity, irreducibility, invariant dimensions etc) is true for $\overline{\mathbb{F}}_\ell$-coefficients provided $\ell$ is large enough or that the $\overline{\mathbb{Z}}_\ell$-models are unique with torsion-free cohomology provided $\ell$ is large enough.

Mon, 06 Nov 2017
15:45
L6

Higher algebra and arithmetic

Lars Hesselholt
(Nagoya University and University of Copenhagen)
Abstract

This talk concerns a twenty-thousand-year old mistake: The natural numbers record only the result of counting and not the process of counting. As algebra is rooted in the natural numbers, the higher algebra of Joyal and Lurie is rooted in a more basic notion of number which also records the process of counting. Long advocated by Waldhausen, the arithmetic of these more basic numbers should eliminate denominators. Notable manifestations of this vision include the Bökstedt-Hsiang-Madsen topological cyclic homology, which receives a denominator-free Chern character, and the related Bhatt-Morrow-Scholze integral p-adic Hodge theory, which makes it possible to exploit torsion cohomology classes in arithmetic geometry. Moreover, for schemes smooth and proper over a finite field, the analogue of de Rham cohomology in this setting naturally gives rise to a cohomological interpretation of the Hasse-Weil zeta function by regularized determinants as envisioned by Deninger.

Mon, 30 Oct 2017
15:45
L6

A new anomaly in 2d chiral conformal field theory

Andre Henriques
(Oxford)
Abstract

Fix a loop group LG, a level k∈ℕ, and let Repᵏ(LG) be corresponding category of positive energy representations.
For any pair of pants Σ (with complex structure in the interior and parametrized boundary), there is an associated functor Repᵏ(LG) × Repᵏ(LG) → Repᵏ(LG): (H,K) ↦ H⊠K, called the fusion product.

It had been widely expected (but never proven) that this operation should be unitary. Namely, that the choice of LG-invariant inner products on H and on K should induce an LG-invariant inner product on H⊠K. We show that this is not the case: there is an anomaly.
More precisely, there is an ℝ₊-torsor canonically associated to Σ. It is only after trivialising of this ℝ₊-torsor that the fusion product acquires an LG-invariant inner product. (The same statement applies when Σ is an arbitrary Riemann surface with boundary.)
Joint work with James Tener.

Mon, 16 Oct 2017
15:45
L6

Higher categories of higher categories

Rune Haugseng
(Copenhagen)
Abstract

I will discuss ongoing work aimed at constructing higher categories of (enriched) higher categories. This should give the appropriate targets for many interesting examples of extended topological quantum field theories, including extended versions of the classical examples of TQFTs due to Turaev-Viro, Reshetikhin-Turaev, etc.

Mon, 09 Oct 2017
15:45
L6

Topological dimension of the boundaries of some hyperbolic Out(F_n)-graphs

Richard D. Wade
(Oxford)
Abstract

Klarrich showed that the Gromov boundary of the curve complex of a hyperbolic surface is homeomorphic to the space of ending laminations on that surface. Independent results of Bestvina-Reynolds and Hamenstädt give an analogous statement for the free factor graph of a free group, where the space of ending laminations is replaced with a space of equivalence classes of arational trees. I will give an introduction to these objects and describe some joint work with Bestvina and Horbez, where we show that the Gromov boundary of the free factor graph for a free group of rank N has topological dimension at most 2N-2.

Subscribe to L6