Thu, 12 Oct 2017
16:00
L6

Heights and anabelian geometry

Alexander Betts
(Oxford)
Abstract

For a smooth variety over a number field, one defines various different homology groups (Betti, de Rham, etale, log-crystalline), which carry various kinds of enriching structure and are thought of as a system of realisations for a putative underlying (mixed) motivic homology group. Following Deligne, one can study fundamental groups in the same way, and the study of specific realisations of the motivic fundamental group has already found Diophantine applications, for instance in the anabelian proof of Siegel's theorem by Kim.

It is hoped that study of fundamental groups should give one access to ``higher'' arithmetic information not visible in the first cohomology, for instance classical and p-adic heights. In this talk, we will discuss recent work making this hope concrete, by demonstrating how local components of canonical heights on abelian varieties admit a natural description in terms of fundamental groups.

Thu, 26 Oct 2017

16:00 - 17:00
L6

Joint Logic/ Number Theory Seminar: Virtual rigid motives of semi-algebraic sets in valued fields

Arthur Forey
(Institut de mathématiques de Jussieu)
Abstract

Let k be a field of characteristic zero and K=k((t)). Semi-algebraic sets over K are boolean combinations of algebraic sets and sets defined by valuative inequalities. The associated Grothendieck ring has been studied by Hrushovski and Kazhdan who link it via motivic integration to the Grothendieck ring of varieties over k. I will present a morphism from the former to the Grothendieck ring of motives of rigid analytic varieties over K in the sense of Ayoub. This allows to refine the comparison by Ayoub, Ivorra and Sebag between motivic Milnor fibre and motivic nearby cycle functor.
 

Thu, 19 Oct 2017
16:00
L6

Smooth values of polynomials

Trevor Wooley
(University of Bristol)
Abstract

Recall that an integer n is called y-smooth when each of its prime divisors is less than or equal to y. It is conjectured that, for any a>0,  any polynomial of positive degree having integral coefficients should possess infinitely many values at integral arguments n that are n^a-smooth. One could consider this problem to be morally “dual” to the cognate problem of establishing that irreducible polynomials assume prime values infinitely often, unless local conditions preclude this possibility. This smooth values conjecture is known to be true in several different ways for linear polynomials, but in general remains unproven for any degree exceeding 1. We will describe some limited progress in the direction of the conjecture, highlighting along the way analogous conclusions for polynomial smoothness. Despite being motivated by a problem in analytic number theory, most of the methods make use of little more than pre-Galois theory. A guest appearance will be made by several hyperelliptic curves. [This talk is based on work joint with Jonathan Bober, Dan Fretwell and Greg Martin].

Thu, 02 Nov 2017
16:00
L6

Norm relations and Euler systems

Christopher Skinner
(Princeton)
Abstract

This talk will report on the definition of some motivic cohomology classes and the proof that they satisfy the norm relations expected of Euler systems, emphasizing a connection with the local Gan-Gross-Prasad conjecture.

Thu, 26 Oct 2017
16:00
L6

Joint Number Theory / Logic Seminar: Virtual rigid motives of semi-algebraic sets in valued fields

Arthur Forey
(Institut de mathématiques de Jussieu)
Abstract

Let k be a field of characteristic zero and K=k((t)). Semi-algebraic sets over K are boolean combinations of algebraic sets and sets defined by valuative inequalities. The associated Grothendieck ring has been studied by Hrushovski and Kazhdan who link it via motivic integration to the Grothendieck ring of varieties over k. I will present a morphism from the former to the Grothendieck ring of motives of rigid analytic varieties over K in the sense of Ayoub. This allows to refine the comparison by Ayoub, Ivorra and Sebag between motivic Milnor fibre and motivic nearby cycle functor.
 

Thu, 24 Aug 2017

15:00 - 16:00
L6

Unbounded derived categories and the finitistic dimension conjecture.

Jeremy Rickard
(Bristol University)
Abstract

Abstract: If A is a finite dimensional algebra, and D(A) the unbounded
derived category of the full module category Mod-A, then it is
straightforward to see that D(A) is generated (as a "localizing
subcategory") by the indecomposable projectives, and by the simple 
modules. It is not so obvious whether it is generated by the 
indecomposable injectives. In 2001, Keller gave a talk in which he 
remarked that"injectives generate" would imply several of the well-known
homological conjectures, such as the Nunke condition and hence the 
generalized Nakayama
conjecture, and asked if there was any relation to the finitistic 
dimension conjecture. I'll show that an algebra that satisfies "injectives 
generate" also satisfies the finitistic dimension conjecture and discuss 
some examples. I'll present things in a fairly concrete way, so most of 
the talk won't assume much knowledge of derived categories.

 

Thu, 24 Aug 2017

14:00 - 15:00
L6

On Hochschild cohomology and global/local structures

Lleonard Rubio y Degrassi
(City University London)
Abstract

Abstract: In this talk I will discuss the interplay between the local and
the global invariants in modular representation theory with a focus on the
first Hochschild cohomology $\mathrm{HH}^1(B)$ of a block algebra $B$. In
particular, I will show the compatibility between $r$-integrable 
derivations
and stable equivalences of Morita type. I will also show that if
$\mathrm{HH}^1(B)$ is a simple Lie algebra such that $B$ has a unique
isomorphism class of simple modules, then $B$ is nilpotent with an
elementary abelian defect group $P$ of order at least 3. The second part 
is joint work with M. Linckelmann.

Thu, 24 Aug 2017

11:30 - 12:30
L6

Quivers and Conformal Field Theory: preprojective algebras and beyond.

Alastair King
(Bath University)
Abstract

Abstract: I will describe how the ADE preprojective algebras appear in 
certain Conformal Field Theories, namely SU(2) WZW models, and explain
the generalisation to the SU(3) case, where 'almost CY3' algebras appear.

Thu, 24 Aug 2017

10:00 - 11:00
L6

New varieties for algebras

Sibylle Schroll (Leicester)
(Leicester)
Abstract

Abstract: In this talk, we will introduce new affine algebraic varieties 
for algebras given by quiver and relations. Each variety contains a 
distinguished element in the form of a monomial algebra. The properties 
and characteristics of this monomial algebra govern those of all other 
algebras in the variety. We will show how amongst other things this gives 
rise to a new way to determine whether an algebra is quasi-hereditary. 
This is a report on joint work both with Ed Green and with Ed Green and 
Lutz Hille.

Wed, 23 Aug 2017

16:45 - 17:45
L6

A McKay correspondence for reflection groups.

Eleonore Faber (Michigan/Leeds)
(University of Michigan, USA)
Abstract

Abstract: This is joint work with Ragnar-Olaf Buchweitz and Colin Ingalls. 
The classical McKay correspondence relates the geometry of so-called 
Kleinian surface singularities with the representation theory of finite 
subgroups of SL(2,C). M. Auslander observed an algebraic version of this 
correspondence: let G be a finite subgroup of SL(2,K) for a field K whose
characteristic does not divide the order of G. The group acts linearly on 
the polynomial ring S=K[x,y] and then the so-called skew group algebra
A=G*S can be seen as an incarnation of the correspondence. In particular
A is isomorphic to the endomorphism ring of S over the corresponding 
Kleinian surface singularity.
Our goal is to establish an analogous result when G in GL(n,K) is a finite 
subgroup generated by reflections, assuming that the characteristic
of K does not divide the order of the group. Therefore we will consider a 
quotient of the skew group ring A=S*G, where S is the polynomial ring in n 
variables. We show that our construction yelds a generalization of 
Auslander's result, and moreover, a noncommutative resolution of the 
discriminant of the reflection group G.

Subscribe to L6