Mon, 29 Jun 2015
15:45
L6

On Unoriented Topological Conformal Field Theories

Ramses Fernandez-Valencia
(Oxford)
Abstract

We give a classification of open Klein topological conformal field theories in terms of Calabi-Yau $A_\infty$-categories endowed with an involution. Given an open Klein topological conformal field theory, there is a universal open-closed extension whose closed part is the involutive version of the Hochschild chains associated to the open part.

Mon, 15 Jun 2015
15:45
L6

Coarse rigidity for Teichm\"uller space

Brian Bowditch
(Warwick)
Abstract
We describe some results regarding the quasi-isometric rigidity of
Teichm\"uller space in either the Teichm\"uller metric or the Weil-Petersson
metric; as well as some other spaces canonically associated to a surface.
A key feature which these spaces have in common is that they admit
a ternary operation, which in an appropriate sense, satisfies the
axioms of a median algebra, up to bounded distance.  This allows
us to set many of the arguments in a general context.
We note that quasi-isometric rigidity of the Teichm\"uller metric has recently
been obtained independently by Eskin, Masur and Rafi by different methods.
Tue, 16 Jun 2015
16:30
L6

Finding Optimal Phylogenetic Trees

Katherine St. John
(City University of New York)
Abstract

Phylogenies, or evolutionary histories, play a central role in modern biology, illustrating the interrelationships between species, and also aiding the prediction of structural, physiological, and biochemical properties. The reconstruction of the underlying evolutionary history from a set of morphological characters or biomolecular sequences is difficult since the optimality criteria favored by biologists are NP-hard, and the space of possible answers is huge. Phylogenies are often modeled by trees with n leaves, and the number of possible phylogenetic trees is $(2n-5)!!$. Due to the hardness and the large number of possible answers, clever searching techniques and heuristics are used to estimate the underlying tree.

We explore the combinatorial structure of the underlying space of trees, under different metrics, in particular the nearest-neighbor-interchange (NNI), subtree- prune-and-regraft (SPR), tree-bisection-and-reconnection (TBR), and Robinson-Foulds (RF) distances.  Further, we examine the interplay between the metric chosen and the difficulty of the search for the optimal tree.

Tue, 16 Jun 2015
14:30
L6

The typical structure of H-free graphs

Rob Morris
(Instituto Nacional de Matemática Pura e Aplicada (IMPA))
Abstract

How many $H$-free graphs are there on $n$ vertices? What is the typical structure of such a graph $G$? And how do these answers change if we restrict the number of edges of $G$? In this talk I will describe some recent progress on these basic and classical questions, focusing on the cases $H=K_{r+1}$ and $H=C_{2k}$. The key tools are the hypergraph container method, the Janson inequalities, and some new "balanced" supersaturation results. The techniques are quite general, and can be used to study similar questions about objects such sum-free sets, antichains and metric spaces.

I will mention joint work with a number of different coauthors, including Jozsi Balogh, Wojciech Samotij, David Saxton, Lutz Warnke and Mauricio Collares Neto. 

Tue, 23 Jun 2015

17:00 - 18:00
L6

Almost small absolute Galois groups

Arno Fehm
(Konstanz)
Abstract

Already Serre's "Cohomologie Galoisienne" contains an exercise regarding the following condition on a field F: For every finite field extension E of F and every n, the index of the n-th powers (E*)^n in the multiplicative group E* is finite. Model theorists recently got interested in this condition, as it is satisfied by every superrosy field and also by every strongly2 dependent field, and occurs in a conjecture of Shelah-Hasson on NIP fields. I will explain how it relates to the better known condition that F is bounded (i.e. F has only finitely many extensions of degree n, for any n - in other words, the absolute Galois group of F is a small profinite group) and why it is not preserved under elementary equivalence. Joint work with Franziska Jahnke.

*** Note unusual day and time ***

Tue, 09 Jun 2015
14:30
L6

Embedding the Binomial Hypergraph into the Random Regular Hypergraph

Matas Šileikis
(Oxford University)
Abstract

Let $G(n,d)$ be a random $d$-regular graph on $n$ vertices. In 2004 Kim and Vu showed that if $d$ grows faster than $\log n$ as $n$ tends to infinity, then one can define a joint distribution of $G(n,d)$ and two binomial random graphs $G(n,p_1)$ and $G(n,p_2)$ -- both of which have asymptotic expected degree $d$ -- such that with high probability $G(n,d)$ is a supergraph of $G(n,p_1)$ and a subgraph of $G(n,p_2)$. The motivation for such a coupling is to deduce monotone properties (like Hamiltonicity) of $G(n,d)$ from the simpler model $G(n,p)$. We present our work with A. Dudek, A. Frieze and A. Rucinski on the Kim-Vu conjecture and its hypergraph counterpart.

Mon, 01 Jun 2015
15:45
L6

Representations of based loop groups

Andre Henriques
(Utrecht and Oxford)
Abstract

Representations of free loop groups possess an operation, akin to
tensor product, under which they form a braided tensor category. I
will discuss a similar operation, which is present on the category of
representations of the based loop groups, and which equips it with the
structure of a monoidal cateogory. Finally, I will present a recent
result, according to which the Drinfel'd centre of the category of
representations of a based loop group is equivalent to the category of
representations of the corresponding free loop group.

Fri, 12 Jun 2015

12:30 - 14:00
L6

tbc

Michael Monoyios
Fri, 05 Jun 2015

12:30 - 14:00
L6

tbc

Sean Ledger
Subscribe to L6