Mathematrix lunches - Discussion with Helen Byrne
Abstract
Prof. Helen Byrne shares her academic path and experience as Director of Equality and Diversity.
More information will appear later.
Prof. Helen Byrne shares her academic path and experience as Director of Equality and Diversity.
More information will appear later.
Our meeting will be a relaxed opportunity to have informal discussions about issues facing minorities in academia and mathematics over lunch. In particular, if anyone would like to suggest a topic to start a discussion about (either in advance or on the day) then please feel free to do this, and it could be a spring board for organised sessions on the same topics in future terms!
In this talk I will introduce Hilbert's 10th Problem (H10) and the model-theoretic notions necessary to explore this problem from the perspective of mathematical logic. I will give a brief history of its proof, talk a little about its connection to decidability and definability, then close by speaking about generalisations of H10 - what has been proven and what has yet to be discovered.
This is a welcome to everyone who is interested in discussing and learning more about topics relating to life in academia and issues faced by minorities. We will tell you more about Mathematrix and the events upcoming in the term, as well as discussing ideas for future terms.
All staff, ECRs and postgrad students are invited to join. The lunches are free, relaxed and informal, and people may come and go as they please.
The meeting on Monday 15th October will be on Impostor Syndrome. In this meeting we will discuss what impostor syndrome is, what might be the causes of it, and some advice for people who are struggling with it. For anyone who wants to read up on what it is and some different types of impostor syndrome in advance, we recommend this blog post: https://www.themuse.com/advice/5-different-types-of-imposter-syndrome-a…. If you have a smart phone or tablet that you can bring with you, we encourage you to, as we will have some anonymous voting, and the more of you that can join in, the better!
We hope to see many of you there again: Quillen Room (N3.12), Monday 1-2pm.
The aim of this talk is to tell the story of Non-Abelian Hodge Theory for curves. The starting point is the space of representations of the fundamental group of a compact Riemann surface. This space can be endowed with the structure of a complex algebraic variety in three different ways, giving rise to three non-algebraically isomorphic moduli spaces called the Betti, de Rham and Dolbeault moduli spaces respectively.
After defining and outlining the construction of these three moduli spaces, I will describe the (non-algebraic) correspondences between them, collectively known as Non-Abelian Hodge Theory. Finally, we will see how the rich structure of the Dolbeault moduli space can be used to shed light on the topology of the space of representations.
In the last years complex networks tools contributed to provide insights on the structure of research, through the study of collaboration, citation and co-occurrence networks. The network approach focuses on pairwise relationships, often compressing multidimensional data structures and inevitably losing information. In this paper we propose for the first time a simplicial complex approach to word co-occurrences, providing a natural framework for the study of higher-order relations in the space of scientific knowledge. Using topological methods we explore the conceptual landscape of mathematical research, focusing on homological holes, regions with low connectivity in the simplicial structure. We find that homological holes are ubiquitous, which suggests that they capture some essential feature of research practice in mathematics. Holes die when a subset of their concepts appear in the same article, hence their death may be a sign of the creation of new knowledge, as we show with some examples. We find a positive relation between the dimension of a hole and the time it takes to be closed: larger holes may represent potential for important advances in the field because they separate conceptually distant areas. We also show that authors' conceptual entropy is positively related with their contribution to homological holes, suggesting that polymaths tend to be on the frontier of research.
[[{"fid":"51386","view_mode":"default","fields":{"format":"default"},"type":"media","attributes":{"class":"file media-element file-default"},"link_text":"Barbara Mahler"}]]
We will discuss the algebraicity of two quantities central to the computation of persistent homology. We will also connect persistent homology and algebraic optimization. Namely, we will express the degree corresponding to the distance variable of the offset hypersurface in terms of the Euclidean distance degree of the starting variety, obtaining a new way to compute these degrees. Finally, we will describe the non-properness locus of the offset construction and use this to describe the set of points that are topologically interesting (the medial axis and center points of the bounded components of the complement of the variety) and relevant to the computation of persistent homology.
Persistent homology is an algebraic tool for quantifying topological features of shapes and functions, which has recently found wide applications in data and shape analysis. In the first and introductory part of this talk I recall the underlying ideas and basic concepts of this very active field of research. In the second part, I plan to sketch a concrete application of this concept to digital image processing.