Fri, 09 Mar 2018

12:00 - 13:00
N3.12

The Matroid of Barcodes: Combinatorial Foundations in TDA

Greg Henselman
(Princeton University)
Abstract

Topological data analysis (TDA) is a robust field of mathematical data science specializing in complex, noisy, and high-dimensional data.  While the elements of modern TDA have existed since the mid-1980’s, applications over the past decade have seen a dramatic increase in systems analysis, engineering, medicine, and the sciences.  Two of the primary challenges in this field regard modeling and computation: what do topological features mean, and are they computable?  While these questions remain open for some of the simplest structures considered in TDA — homological persistence modules and their indecomposable submodules — in the past two decades researchers have made great progress in algorithms, modeling, and mathematical foundations through diverse connections with other fields of mathematics.  This talk will give a first perspective on the idea of matroid theory as a framework for unifying and relating some of these seemingly disparate connections (e.g. with quiver theory, classification, and algebraic stability), and some questions that the fields of matroid theory and TDA may mutually pose to one another.  No expertise in homological persistence or general matroid theory will be assumed, though prior exposure to the definition of a matroid and/or persistence module may be helpful.

Wed, 29 Nov 2017
11:00
N3.12

The mystical field with one element

Alex Saad
Abstract

The “field with one element” is an interesting algebraic object that in some sense relates linear algebra with set theory. In a much deeper vein it is also expected to have a role in algebraic geometry that could potentially “lift" Deligne’s proof of the final Weil Conjecture for varieties over finite fields to a proof of the Riemann hypothesis for the Riemann zeta function. The only problem is that it doesn’t exist. In this highly speculative talk I will discuss some of these concepts, and focus mainly on zeta functions of algebraic varieties over finite fields. I will give a (very) brief sketch of how to interpret various zeta functions in a geometric context, and try to explain what goes wrong for the Riemann zeta function that makes this a difficult problem.

Wed, 22 Nov 2017
11:00
N3.12

The geometric calculus of Newton.

Gareth Wilkes
Abstract

I was speak on the way Newton carries out his calculus in the Principia in the framework of classical geometry rather than with fluxions, his deficiencies, and the relation of this work to inverse-square laws.

Wed, 15 Nov 2017
11:00
N3.12

Outer Space

Sam Shepherd
Abstract

Outer Space is an important object in Geometric Group Theory and can be described from two viewpoints: as a space of marked graphs and a space of actions on trees. The latter viewpoint can be used to prove that Outer Space is contractible; and this fact together with some arguments using the first viewpoint enables us to say something about the Outer Automorphism group of a free group - I will sketch both these proofs.

Fri, 01 Dec 2017

10:30 - 11:30
N3.12

Categorical rigidity

Josh Ciappara
(University of Oxford)
Abstract

This talk will introduce the notion of categorical rigidity and the automorphism class group of a category. We will proceed with calculations for several important categories, hopefully illuminating the inverse relationship between the automorphisms of a category and the extent to which the structure of its objects is determined categorically. To conclude, some discussion of what progress there is on currently open/unknown cases.

Wed, 01 Nov 2017

11:00 - 12:30
N3.12

Line Arrangements on the Projective Plane

Sebastian Eterovic
Abstract

Classifying line arrangements on the plane is a problem that has been around for a long time. There has been a lot of work from the perspective of incidence geometry, but after a paper of Hirzebruch in in 80's, it has also attracted the attention of algebraic geometers for the applications that it has on classifying complex algebraic surfaces of general type. In this talk I will present various results around this problem, I will show some specific questions that are still open, and I will explain how it relates to complex surfaces of general type. 
 

Wed, 25 Oct 2017
11:00
N3.12

Exploring modular forms through modular symbols.

Jamie Beacom
Abstract

Modular forms holomorphic functions on the upper half of the complex plane, H, invariant under certain matrix transformations of H. The have a very rich structure - they form a graded algebra over C and come equipped with a family of linear operators called Hecke operators. We can also view them as functions on a Riemann surface, which we refer to as a modular curve. It transpires that the integral homology of this curve is equipped with such a rich structure that we can use it to compute modular forms in an algorithmic way. The modular symbols are a finite presentation for this homology, and we will explore this a little and their connection to modular symbols.

Wed, 18 Oct 2017

11:00 - 12:30
N3.12

Penrose Tilings: a light introduction

Kieran Calvert
Abstract

This talk will hopefully highlight the general framework in which Penrose tilings are proved to be aperiodic and in fact a tiling. 

Wed, 11 Oct 2017

11:00 - 12:30
N3.12

Game, Set and Bound!

Adam Keilthy
(Oxford University)
Abstract


In the game 'Set', players compete to pick out groups of three cards sharing common attributes. But how many cards must be dealt before such a group must appear? 
This is an example of a "cap set problem", a problem in Ramsey theory: how big can a set of objects get before some form of order appears? We will translate the cap set problem into a problem of geometry over finite fields, discussing the current best upper bounds and running through an elementary proof. We will also (very) briefly discuss one or two implications of the cap set problem over F_3 to other questions in Ramsey theory and computational complexity
 

Subscribe to N3.12