Wed, 14 May 2014
10:30
N3.12

An introduction to homotopy type theory and Univalent Foundations

Emily Cliff
Abstract

In this talk we aim to introduce the key ideas of homotopy type theory and show how it draws on and has applications to the areas of logic, higher category theory, and homotopy theory. We will discuss how types can be viewed both as propositions (statements about mathematics) as well as spaces (mathematical objects themselves). In particular we will define identity types and explore their groupoid-like structure; we will also discuss the notion of equivalence of types, introduce the Univalence Axiom, and consider some of its implications. Time permitting, we will discuss inductive types and show how they can be used to define types corresponding to specific topological spaces (e.g. spheres or more generally CW complexes).\\

This talk will assume no prior knowledge of type theory; however, some very basic background in category theory (e.g. the definition of a category) and homotopy theory (e.g. the definition of a homotopy) will be assumed.

Wed, 07 May 2014
10:30
N3.12

Random Walks on Mapping Class Groups

Henry Bradford
Abstract

An important moral truth about the mapping class group of a closed orientable surface is the following: a generic mapping class has no power fixing a finite family of simple closed curves on the surface. Such "generic" elements are called pseudo-Anosov. In this talk I will discuss one instantiation of this principle, namely that the probability of a simple random walk on the mapping class group returning a non-pseudo Anosov element decays exponentially quickly.

Wed, 30 Apr 2014
10:30
N3.12

On the congruence subgroup problem for branch groups

Alejandra Garrido Angulo
Abstract

For any infinite group with a distinguished family of normal subgroups of finite index -- congruence subgroups-- one can ask whether every finite index subgroup contains a congruence subgroup. A classical example of this is the positive solution for $SL(n,\mathbb{Z})$ where $n\geq 3$, by Mennicke and Bass, Lazard and Serre. \\

Groups acting on infinite rooted trees are a natural setting in which to ask this question. In particular, branch groups have a sufficiently nice subgroup structure to yield interesting results in this area. In the talk, I will introduce this family of groups and the congruence subgroup problem in this context and will present some recent results.

Wed, 12 Mar 2014
10:30
N3.12

CAT(0) structures for free-by-cyclic groups

Robert Kropholler
Abstract

I will discuss free-by-cyclic groups and cases where they can and cannot act on CAT(0) spaces. I will specifically go into a construction building CAT(0) 2-complexes on which free of rank 2-by-cyclic act. This is joint work with Martin Bridson and Martin Lustig.

Wed, 05 Mar 2014
10:30
N3.12

Modularity and Galois Representations

Benjamin Green
Abstract

The modularity theorem saying that all (semistable) elliptic curves are modular was one of the two crucial parts in the proof of Fermat's last theorem. In this talk I will explain what elliptic curves being 'modular' means and how an alternative definition can be given in terms of Galois representations. I will then state some of the conjectures of the Langlands program which in some sense generalise the modularity theorem.

Wed, 19 Feb 2014
10:30
N3.12

Wise Small Cancellation Theory

Lukas Buggisch
Abstract

The classical small cancellation theory goes back to the 1950's and 1960's when the geometry of 2-complexes with a unique 0-cell was studied, i.e. the standard 2-complex of a finite presentation. D.T. Wise generalizes the Small Cancellation Theory to 2-complexes with arbitray 0-cells showing that certain classes of Small Cancellation Groups act properly discontinuously and cocompactly on CAT(0) Cube complexes and hence have codimesion 1-subgroups. To be more precise I will introduce "his" version of small Cancellation Theory and go roughly through the main ideas of his construction of the cube complex using Sageeve's famous construction. I'll try to make the ideas intuitively clear by using many pictures. The goal is to show that B(4)-T(4) and B(6)-C(7) groups act properly discontinuously and cocompactly on CAT(0) Cube complexes and if there is time to explain the difficulty of the B(6) case. The talk should be self contained. So don't worry if you have never had heard about "Small Cancellation".

Wed, 12 Feb 2014
10:30
N3.12

Groups whose word problem is context-free

Giles Gardam
Abstract

We will introduce some necessary basic notions regarding formal languages, before proceeding to give the classification of groups whose word problem is context-free as the virtually free groups (due to Muller and Schupp (1983) together with Dunwoody's accessibility of finitely presented groups (1985) for full generality). Emphasis will be on the group theoretic aspects of the proof, such as Stalling's theorem on ends of groups, accessibility, and geometry of the Cayley graph (rather than emphasizing details of formal languages).

Subscribe to N3.12