10:30
An introduction to homotopy type theory and Univalent Foundations
Abstract
In this talk we aim to introduce the key ideas of homotopy type theory and show how it draws on and has applications to the areas of logic, higher category theory, and homotopy theory. We will discuss how types can be viewed both as propositions (statements about mathematics) as well as spaces (mathematical objects themselves). In particular we will define identity types and explore their groupoid-like structure; we will also discuss the notion of equivalence of types, introduce the Univalence Axiom, and consider some of its implications. Time permitting, we will discuss inductive types and show how they can be used to define types corresponding to specific topological spaces (e.g. spheres or more generally CW complexes).\\
This talk will assume no prior knowledge of type theory; however, some very basic background in category theory (e.g. the definition of a category) and homotopy theory (e.g. the definition of a homotopy) will be assumed.
10:30
Random Walks on Mapping Class Groups
Abstract
An important moral truth about the mapping class group of a closed orientable surface is the following: a generic mapping class has no power fixing a finite family of simple closed curves on the surface. Such "generic" elements are called pseudo-Anosov. In this talk I will discuss one instantiation of this principle, namely that the probability of a simple random walk on the mapping class group returning a non-pseudo Anosov element decays exponentially quickly.
10:30
On the congruence subgroup problem for branch groups
Abstract
For any infinite group with a distinguished family of normal subgroups of finite index -- congruence subgroups-- one can ask whether every finite index subgroup contains a congruence subgroup. A classical example of this is the positive solution for $SL(n,\mathbb{Z})$ where $n\geq 3$, by Mennicke and Bass, Lazard and Serre. \\
Groups acting on infinite rooted trees are a natural setting in which to ask this question. In particular, branch groups have a sufficiently nice subgroup structure to yield interesting results in this area. In the talk, I will introduce this family of groups and the congruence subgroup problem in this context and will present some recent results.
10:30
CAT(0) structures for free-by-cyclic groups
Abstract
I will discuss free-by-cyclic groups and cases where they can and cannot act on CAT(0) spaces. I will specifically go into a construction building CAT(0) 2-complexes on which free of rank 2-by-cyclic act. This is joint work with Martin Bridson and Martin Lustig.
10:30
Modularity and Galois Representations
Abstract
The modularity theorem saying that all (semistable) elliptic curves are modular was one of the two crucial parts in the proof of Fermat's last theorem. In this talk I will explain what elliptic curves being 'modular' means and how an alternative definition can be given in terms of Galois representations. I will then state some of the conjectures of the Langlands program which in some sense generalise the modularity theorem.