Wed, 19 Feb 2014
10:30
N3.12

Wise Small Cancellation Theory

Lukas Buggisch
Abstract

The classical small cancellation theory goes back to the 1950's and 1960's when the geometry of 2-complexes with a unique 0-cell was studied, i.e. the standard 2-complex of a finite presentation. D.T. Wise generalizes the Small Cancellation Theory to 2-complexes with arbitray 0-cells showing that certain classes of Small Cancellation Groups act properly discontinuously and cocompactly on CAT(0) Cube complexes and hence have codimesion 1-subgroups. To be more precise I will introduce "his" version of small Cancellation Theory and go roughly through the main ideas of his construction of the cube complex using Sageeve's famous construction. I'll try to make the ideas intuitively clear by using many pictures. The goal is to show that B(4)-T(4) and B(6)-C(7) groups act properly discontinuously and cocompactly on CAT(0) Cube complexes and if there is time to explain the difficulty of the B(6) case. The talk should be self contained. So don't worry if you have never had heard about "Small Cancellation".

Wed, 12 Feb 2014
10:30
N3.12

Groups whose word problem is context-free

Giles Gardam
Abstract

We will introduce some necessary basic notions regarding formal languages, before proceeding to give the classification of groups whose word problem is context-free as the virtually free groups (due to Muller and Schupp (1983) together with Dunwoody's accessibility of finitely presented groups (1985) for full generality). Emphasis will be on the group theoretic aspects of the proof, such as Stalling's theorem on ends of groups, accessibility, and geometry of the Cayley graph (rather than emphasizing details of formal languages).

Wed, 05 Feb 2014
10:30
N3.12

An introduction to Kähler groups

Claudio Llosa Isenrich
Abstract

A Kähler group is a finitely presented group that can be realized as fundamental group of a compact Kähler manifold. It is known that every finitely presented group can be realized as fundamental group of a compact real and even symplectic manifold of dimension greater equal than 4 and of a complex manifold of complex dimension greater equal than 2. In contrast, the question which groups are Kähler groups is surprisingly harder and there are large classes of examples for both, Kähler, and non-Kähler groups. This talk will give a brief introduction to the theory of Kähler manifolds and then discuss some basic examples and properties of Kähler groups. It is aimed at a general audience and no prior knowledge of the field will be required.

Subscribe to N3.12