Mon, 07 Nov 2022
15:00
N3.12

The Gauss problem for central leaves.

Valentijn Karemaker
(University of Utrecht)
Abstract

For a family of finite sets whose cardinalities are naturally called class numbers, the Gauss problem asks to determine the subfamily in which every member has class number one. We study the Siegel moduli space of abelian varieties in characteristic p and solve the Gauss problem for the family of central leaves, which are the loci consisting of points whose associated p-divisible groups are isomorphic. Our solution involves mass formulae, computations of automorphism groups, and a careful analysis of Ekedahl-Oort strata in genus 4. This geometric Gauss problem is closely related to an arithmetic Gauss problem for genera of positive-definite quaternion Hermitian lattices, which we also solve.

Thu, 03 Nov 2022
13:45
N3.12

Uniqueness of supersymmetric AdS5 black holes

Sergei G. Ovchinnikov
(Edinburgh University)
Abstract

The classification of anti de Sitter black holes is an open problem of central importance in holography. In this talk, I will present new advances in classification of supersymmetric solutions to five-dimensional minimal gauged supergravity. In particular, we prove a black hole uniqueness theorem within a ‘Calabi-type’ subclass of solutions with biaxial symmetry. This subclass includes all currently known black hole solutions within this theory.

Thu, 27 Oct 2022

13:00 - 14:00
N3.12

Mathematrix: Support in the Maths Institute

Abstract

We will be joined by Charlotte Turner-Smith to discuss issues surrounding harassment and mental health, and how the department is helping to tackle these.

Thu, 06 Oct 2022
14:00
N3.12

Gravitational Regge bounds

Kelian Haring
(Cern)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is possible to join online via Zoom.

Abstract

I will review the basic assumptions and spell out the arguments that lead to the bound on the Regge growth of gravitational scattering amplitudes. I will discuss the Regge bounds both at fixed transfer momentum and smeared over it. Our basic conclusion is that gravitational scattering amplitudes admit dispersion relations with two subtractions. For a sub-class of smeared amplitudes, black hole formation reduces the number of subtractions to one. Finally, I will discuss bounds on local growth derived using dispersion relations. This talk is based on https://arxiv.org/abs/2202.08280.

Fri, 25 Nov 2022

12:00 - 13:00
N3.12

Knutson's Conjecture on the Representation Ring

Diego Martin Duro
(University of Warwick)
Abstract

Donald Knutson proposed the conjecture, later disproven and refined by Savitskii, that for every irreducible character of a finite group, there existed a virtual character such their tensor product was the regular character. In this talk, we disprove both this conjecture and its refinement. We then introduce the Knutson Index as a measure of the failure of Knutson's Conjecture and discuss its algebraic properties.

Fri, 02 Dec 2022

12:00 - 13:00
N3.12

Continuous Linear Endomorphisms of Holomorphic Functions

Finn Wiersig
(University of Oxford)
Abstract

Let X denote an open subset of Cd, and O its sheaf of holomorphic functions. In the 1970’s, Ishimura studied the morphisms of sheaves P:OO of C-vector spaces which are continuous, that is the maps P(U):O(U)O(U) on the sections are continuous. In this talk, we explain his result, and explore its analogues in the non-Archimedean world.

Fri, 18 Nov 2022

12:00 - 13:00
N3.12

Realising The Smooth Representations of GL(2,Zp)

Tom Adams
(University of Cambridge)
Abstract

The character table of GL(2,Fq), for a prime power q, was constructed over a century ago. Many of these characters were determined via the explicit construction of a corresponding representation, but purely character-theoretic techniques were first used to compute the so-called discrete series characters. It was not until the 1970s that Drinfeld was able to explicitly construct the corresponding discrete series representations via l-adic étale cohomology groups. This work was later generalised by Deligne and Lusztig to all finite groups of Lie type, giving rise to Deligne-Lusztig theory.

In a similar vein, we would like to construct the representations affording the (smooth) characters of compact groups like GL(2,Zp), where Zp is the ring of p-adic integers. Deligne-Lusztig theory suggests hunting for these representations inside certain cohomology groups. In this talk, I will consider one such approach using a non-archimedean analogue of de Rham cohomology.

Fri, 11 Nov 2022

12:00 - 13:00
N3.12

On quivers, Auslander algebras and derived equivalences

Ilaria di Dedda
(Kings College London)
Abstract

Auslander-Reiten theory provides lots of powerful tools to study algebras of finite representation type. One of these is Auslander correspondence, a well-known result establishing a bijection between the class of algebras of finite representation type and their corresponding Auslander algebras. I will present these classical results in a key example: the class of algebras associated to quivers of type A_n. I will talk about well-known results regarding their derived equivalence with another class of algebras, and I will present a more recent result regarding the perfect derived category of the Auslander algebras of type A_n.

Subscribe to N3.12