Mon, 12 Nov 2012

15:45 - 16:45
Oxford-Man Institute

tbc

Wei Pan
(University of Oxford)
Abstract
Mon, 12 Nov 2012

14:15 - 15:15
Oxford-Man Institute

Towards a rigorous justification of kinetic theory: The gainless heterogeneous Boltzmann equation.

Florian Thiel
(University of Warwick)
Abstract

We study the asymptotic behavior of deterministic dynamics of many interacting particles with random initial data in the limit where the number of particles tends to infinity. A famous example is hard sphere flow, we restrict our attention to the simpler case where particles are removed after the first collision. A fixed number of particles is drawn randomly according to an initial density $f_0(u,v)$ depending on $d$-dimensional position $u$ and velocity $v$. In the Boltzmann Grad scaling, we derive the validity of a Boltzmann equation without gain term for arbitrary long times, when we assume finiteness of moments up to order two and initial data that are $L^\infty$ in space. We characterize the many particle flow by collision trees which encode possible collisions. The convergence of the many-particle dynamics to the Boltzmann dynamics is achieved via the convergence of associated probability measures on collision trees. These probability measures satisfy nonlinear Kolmogorov equations, which are shown to be well-posed by semigroup methods.

Mon, 15 Oct 2012

15:45 - 16:45
Oxford-Man Institute

Skorohod Equation and Reflected Backward SDE.

Mingyu Xu
(Chinese Academy of Science Beijing)
Abstract

Abstract: By using the Skorohod equation we derive an
iteration procedure which allows us to solve a class of reflected backward
stochastic differential equations with non-linear resistance induced by the
reflected local time. In particular, we present a new method to study the
reflected BSDE proposed first by El Karoui et al. (1997).

Mon, 15 Oct 2012

14:15 - 15:15
Oxford-Man Institute

A stochastic approach to the evolution by mean curvature flow.

FREDERICA DRAGONI
(Cardiff University)
Abstract

Abstract: In the talk we first introduce the level set equation for the evolution by mean curvature flow, explaining the main difference between the standard Euclidean case and the horizontal evolution.

Then we will introduce a stochastic representation formula for the viscosity solution of the level set equation related to the value function of suitable associated stochastic controlled ODEs which are motivated by a concept of intrinsic Brownian motion in Carnot-Caratheodory spaces.

Mon, 08 Oct 2012

15:45 - 16:45
Oxford-Man Institute

Higher order spatial approximations for degenerate parabolic SPDEs

ERIC JOSEPH HALL
(Edinburgh University)
Abstract

Abstract: We consider an implicit finite difference
scheme on uniform grids in time and space for the Cauchy problem for a second
order parabolic stochastic partial differential equation where the parabolicity
condition is allowed to degenerate. Such equations arise in the nonlinear
filtering theory of partially observable diffusion processes. We show that the
convergence of the spatial approximation can be accelerated to an arbitrarily
high order, under suitable regularity assumptions, by applying an extrapolation
technique.

Subscribe to Oxford-Man Institute