Mon, 11 Feb 2013

14:15 - 15:15
Oxford-Man Institute

A randomluy forced Burgers equation on the real line

ERIC CATOR
(Delft University of Technology)
Abstract

In this talk I will consider the Burgers equation with a homogeneous Possion process as a forcing potential. In recent years, the randomly forced Burgers equation, with forcing that is ergodic in time, received a lot of attention, especially the almost sure existence of unique global solutions with given average velocity, that at each time only depend on the history up to that time. However, in all these results compactness in the space dimension of the forcing was essential. It was even conjectured that in the non-compact setting such unique global solutions would not exist. However, we have managed to use techniques developed for first and last passage percolation models to prove that in the case of Poisson forcing, these global solutions do exist almost surely, due to the existence of semi-infinite minimizers of the Lagrangian action. In this talk I will discuss this result and explain some of the techniques we have used.

This is joined work Yuri Bakhtin and Konstantin Khanin.

Mon, 04 Feb 2013

14:15 - 15:15
Oxford-Man Institute

Filtration shrinkage, strict local martingales and the Follmer measure

MARTIN LARSSON
(EPFL Swiss Finance Institute)
Abstract

Abstract: When a strict local martingale is projected onto a subfiltration to which it is not adapted, the local martingale property may be lost, and the finite variation part of the projection may have singular paths. This phenomenon has consequences for arbitrage theory in mathematical finance. In this paper it is shown that the loss of the local martingale property is related to a measure extension problem for the associated Föllmer measure. When a solution exists, the finite variation part of the projection can be interpreted as the compensator, under the extended measure, of the explosion time of the original local martingale. In a topological setting, this leads to intuitive conditions under which its paths are singular. The measure extension problem is then solved in a Brownian framework, allowing an explicit treatment of several interesting examples.

Mon, 28 Jan 2013

15:45 - 16:45
Oxford-Man Institute

Near-critical Ising mode.

CHRISTOPHE GARBAN
(ENS Lyon)
Abstract
In this talk, I will present two results on the behavior of the Ising model on the planar lattice near its critical point: (i) In the first result (joint work with F.Camia and C. Newman), we will fix the temperature to be the critical temperature T_c and we will vary the magnetic field h \geq 0. Our main result states that in the plane Z^2, the average magnetization at the origin behaves up to constants like h^{1/15}. This result is interesting since the classical computa- tion of the average magnetization by Onsager requires the external magnetic field h to be exactly 0 . (ii) In the second result (joint work with H. Duminil-Copin and G. Pete), we focus on the correlation length of the Ising model when h is now fixed to be zero and one varies instead the temperature T around T_c. In rough terms, if T
Mon, 28 Jan 2013

14:15 - 15:15
Oxford-Man Institute

Half planar random maps

OMER ANGEL
(University of British Colombia)
Abstract

Abstract: We study measures on half planar maps that satisfy a natural domain Markov property. I will discuss their classification and some of their geometric properties. Joint work with Gourab Ray.

Mon, 21 Jan 2013

15:45 - 16:45
Oxford-Man Institute

The stochastic quasi-geostrophic equation

RONGCHAN ZHU
(Bielefeld University)
Abstract
In this talk we talk about the 2D stochastic quasi-geostrophic equation on T2 for general parameter _ 2 (0; 1) and multiplicative noise. We
prove the existence of martingale solutions and Markov selections for multiplicative noise for all _ 2 (0; 1) . In the subcritical case _ > 1=2, we prove existence and uniqueness of (probabilistically) strong solutions. We obtain the ergodicity for _ > 1=2 for degenerate noise. We also study the long time behaviour of the solutions tothe 2D stochastic quasi-geostrophic equation on T2 driven by real linear multiplicative noise and additive noise in the subcritical case by proving the existence of a random attractor.
Mon, 21 Jan 2013

14:15 - 15:15
Oxford-Man Institute

Contraction Rates for Bayesian Inverse Problems

SERGIOS AGAPIOU
(University of Warwick)
Abstract

Abstract: We consider the inverse problem of recovering u from a noisy, indirect observation We adopt a Bayesian approach, in which the aim is to determine the posterior distribution _y on the unknown u, given some prior information about u in the form of a prior distribution _0,together with the observation y. We are interested in the question of posterior consistency, which is the characterization of the behaviour of _y as more data become available. We work in a separable Hilbert space X, assuming a Gaussian prior _0 = N(0; _ 2C0). The theory is developed using two concrete problems: i) a family of linear inverse problems in which we want to _nd u from y where y = A

Mon, 26 Nov 2012

15:45 - 16:45
Oxford-Man Institute

tbc

Karol Szczypkowski
Abstract
Mon, 26 Nov 2012

14:15 - 15:15
Oxford-Man Institute

Fractional Laplacian with gradient perturbations

Tomasz Jakubowski
Abstract

We consider the fractional Laplacian perturbed by the gradient operator b(x)\nabla for various classes of vector fields b. We construct end estimate the corresponding semigroup.

Mon, 19 Nov 2012

15:45 - 16:45
Oxford-Man Institute

Strong and weak solutions to stochastic Landau-Lifshitz equations

Zdzislaw Brzezniak
(University of York)
Abstract

I will speak about the of weak (and the existence and uniqueness of strong solutions) to the stochastic
Landau-Lifshitz equations for multi (one)-dimensional spatial domains. I will also describe the corresponding Large Deviations principle and it's applications to a ferromagnetic wire. The talk is based on a joint works with B. Goldys and T. Jegaraj.

Mon, 19 Nov 2012

14:15 - 15:15
Oxford-Man Institute

Google maps and improper Poisson line processes

WILFRID KENDALL
(University of Warwick)
Abstract

I will report on joint work in progress with David Aldous, concerning a curious random metric space on the plane which can be constructed with the help of an improper Poisson line process.

Subscribe to Oxford-Man Institute