Mon, 25 May 2009
15:45
Oxford-Man Institute

TBA

Philippe Marchal
Mon, 25 May 2009
14:15
Oxford-Man Institute

Long time/weak friction asymptotics for the Langevin equation in a periodic potential.

Greg Pavliotis
Abstract

In this talk we will review some recent results on the long-time/large-scale, weak-friction asymptotics for the one dimensional Langevin equation with a periodic potential. First we show that the Freidlin-Wentzell and central limit theorem (homogenization) limits commute. We also show that, in the combined small friction, long-time/large-scale limit the particle position converges weakly to a Brownian motion with a singular diffusion coefficient which we compute explicitly. Furthermore we prove that the same result is valid for a whole one parameter family of space/time rescalings. We also present a new numerical method for calculating the diffusion coefficient and we use it to study the multidimensional problem and the problem of Brownian motion in a tilted periodic potential.

Mon, 18 May 2009
15:45
Oxford-Man Institute

TBA

Karl-Theodor Sturm
Mon, 18 May 2009
14:15
Oxford-Man Institute

Recent problems involving moments determinacy of distributions.

Dr Jordan Stoyanov
(Newcastle)
Abstract

If a distribution, say F, has all moments finite, then either F is unique (M-determinate) in the sense that F is the only distribution with these moments, or F is non-unique (M-indeterminate).  In the latter case we suggest a method for constructing a Stieltjes class consisting of infinitely many distributions different from F and all having the same moments as F.  We present some shocking examples involving distributions such as N, LogN, Exp and explain what and why.  We analyse conditions which are sufficient for F to be M-determinate or M-indeterminate.  Then we deal with recent problems from the following areas:

 

(A)  Non-linear (Box-Cox) transformations of random data.

(B) Distributional properties of functionals of stochastic processes.

(C) Random sums of random variables.

 

If time permits, some open questions will be outlined.  The talk will be addressed to colleagues, including doctoral and master students, working or having interests in the area of probability/stochastic processes/statistics and their applications. 

Mon, 11 May 2009
15:45
Oxford-Man Institute

A stochastic approach to relativistic diffusions

Dr Ismael Bailleul
(Cambridge)
Abstract

A new class of relativistic diffusions encompassing all the previously studied examples has recently been introduced by C. Chevalier and F Debbasch, both in a heuristic and analytic way.  Roughly speaking, they are characterised by the existence at each (proper) time (of the moving particle) of a (local) rest frame where the random part of the acceleration of the particle (computed using the time of the rest frame) is brownian in any spacelike direction of the frame.

I will explain how the tools of stochastic calculus enable us to give a concise and elegant description of these random paths on any Lorentzian manifiold.  A mathematically clear definition of the the one-particle distribution function of the dynamics will emerge from this definition, and whose main property will be explained.  This will enable me to obtain a general H-theorem and to shed some light on links between probablistic notions and the large scale structure of the manifold.

All necessary tools from stochastic calculus and geometry will be explained.

Mon, 11 May 2009
14:15
Oxford-Man Institute

TBA

Dr Martin Pistorius
Mon, 01 Jun 2009
14:15
Oxford-Man Institute

Parameter estimation for Rough Differential Equations

Anastasia Papavasiliou
(Warwick)
Abstract

My goal is to estimate unknown parameters in the vector field of a rough differential equation, when the expected signature for the driving force is known and we estimate the expected signature of the response by Monte Carlo averages.

I will introduce the "expected signature matching estimator" which extends the moment matching estimator and I will prove its consistency and asymptomatic normality, under the assumption that the vector field is polynomial.  Finally, I will describe the polynomial system one needs to solve in order to compute this estimatior.

Mon, 27 Apr 2009
15:45
Oxford-Man Institute

A Random Matrix Approach Uncertainty Analysis in Complex Aero-mechanical

Prof Sondiphon Adhikari
(Swansea)
Abstract

Numerical computer codes implementing physics based models are the backbone of today's mechanical/aerospace engineering analysis and design methods. Such computational codes can be extremely expensive consisting of several millions of degrees of freedom. However, large models even with very detailed physics are often not enough to produce credible numerical results because of several types of uncertainties which exist in the whole process of physics based computational predictions. Such uncertainties include, but not limited to (a) parametric uncertainty (b) model inadequacy; (c) uncertain model calibration error coming from experiments and (d) computational uncertainty. These uncertainties must be assessed and systematically managed for credible computational predictions. This lecture will discuss a random matrix approach for addressing these issues in the context of complex structural dynamic systems. An asymptotic method based on eigenvalues and eigenvectors of Wishart random matrices will be discussed. Computational predictions will be validated against laboratory based experimental results.

Mon, 27 Apr 2009
14:15
Oxford-Man Institute

The parabolic Anderson model with heavy-tailed potential

Peter Moerters
(Bath)
Abstract

The parabolic Anderson model is the Cauchy problem for the heat equation with random potential.  It offers a case study for the possible effects that a random, or irregular environment can have on a diffusion process.  In this talk I review results obtained for an extreme case of heavy-tailed potentials, among the effects we discuss our intermittency, strong localisation and ageing.

Subscribe to Oxford-Man Institute