Fri, 29 May 2009
14:15
Oxford-Man Institute

BSDEs from utility indifference valuation: Some new results and techniques

Martin Schweizer
(ETH)
Abstract

One of the popular approaches to valuing options in incomplete financial markets is exponential utility indifference valuation. The value process for the corresponding stochastic control problem can often be described by a backward stochastic differential equation (BSDE). This is very useful for proving theoretical properties, but actually solving these equations is difficult. With the goal of obtaining more information, we therefore study BSDE transformations that allow us to derive upper and/or lower bounds, in terms of solutions of other BSDEs, that can be computed more explicitly. These ideas and techniques also are of independent interest for BSDE theory.

This is joint work with Christoph Frei and Semyon Malamud.

Mon, 02 Mar 2009
14:15
Oxford-Man Institute

Some criteria for hitting probabilities. Application to systems of stochastic wave equation with additive noise

Professor Marta Sanz Solé
(Universitat de Barcelona)
Abstract
We develop several results on hitting probabilities of random fields which highlight the role of the dimension of the parameter space. This yields upper and lower bounds in terms of Hausdorff measure and Bessel-Riesz capacity, respectively. We apply these results to a system of stochastic wave equations in spatial dimension k≥1 driven by a d-dimensional spatially homogeneous additive Gaussian noise that is white in time and coloured in space.

Mon, 23 Feb 2009
14:15
Oxford-Man Institute

Stochastic geometry and telecommunications modelling

Dr Sergei Zuev
(University of Strathclyde)
Abstract

Stochastic geometry gradually becomes a necessary theoretical tool to model and analyse modern telecommunication systems, very much the same way the queuing theory revolutionised studying the circuit switched telephony in the last century. The reason for this is that the spatial structure of most contemporary networks plays crucial role in their functioning and thus it has to be properly accounted for when doing their performance evaluation, optimisation or deciding the best evolution scenarios.  The talk will present some stochastic geometry models and tools currently used in studying modern telecommunications.  We outline specifics of wired, wireless fixed and ad-hoc systems and show how the stochastic geometry modelling helps in their analysis  and optimisation.

Mon, 09 Mar 2009
15:45
Oxford-Man Institute

Random walks on random graphs and trees

Dr David Croydon
(University of Warwick)
Abstract
I will discuss scaling properties of simple random walks on various random graphs, including those generated by random walk paths, branching processes and branching random walk, and briefly describe how attempting to understand the random walk on a critical percolation cluster provides some motivation for this work.

Mon, 02 Mar 2009
15:45
Oxford-Man Institute

Minimal position in branching random walk

Professor Yue-Yun Hu
(Université Paris XIII)
Abstract

This talk is based on a joint work with Zhan Shi: We establish a second-order almost sure limit theorem for the minimal position in a one-dimensional super-critical branching random walk, and also prove a martingale convergence theorem which answers a question of Biggins and Kyprianou (2005). Our method applies furthermore to the study of directed polymers on a disordered tree. In particular, we give a rigorous proof of a phase transition phenomenon for the partition function (from the point of view of convergence in probability), already described by Derrida and Spohn (1988). Surprisingly, this phase transition phenomenon disappears in the sense of upper almost sure limits.

Mon, 23 Feb 2009
15:45
Oxford-Man Institute

Random walks on transversally confomal foliations (on a joint work with B.Deroin).

Dr Victor Kleptsyn
(Université de Rennes)
Abstract

Given a foliation of a compact manifold, leaves of which are equipped with a Riemannian metric, one can consider the associated "leafwise"

Brownian motion, and study its asymptotic properties (such as asymptotic distribution, behaviour of holonomy maps, etc.).

Lucy Garnet studied such measures, introducing the notion of a harmonic measure -- stationary measure of this process; the name "harmonic" comes from the fact that a measure is stationary if and only if with respect to it integral of every leafwise Laplacian of a smooth function equals zero (so, the measure is "harmonic" in the sense of distributions).

It turns out that for a transversally conformal foliation, unless it possesses a transversally invariant measure (which is a rather rare case), the associated random dynamics can be described rather precisely. Namely, for every minimal set in the foliation there exists a unique harmonic measure supported on it -- and this gives all the possible ergodic harmonic measures (in particular, there is a finite number of them, and they are always supported on the minimal sets).

Also, the holonomy maps turn out to be (with probability one) exponentially contracting -- so, the Lyapunov exponent of the dynamics is negative. Finally, for any initial point almost every path tends to one of the minimal sets and is asymptotically distributed with respect to the corresponding harmonic measure -- and the functions defining the probabilities of tending to different sets form a base in the space of continuous leafwise harmonic functions.

An interesting effect that is a corollary of this consideration is that for transversally conformal foliations the number of the ergodic harmonic measures does not depend on the choice of Riemannian metric on the leaves. This fails for non-transversally conformal foliations:

there is an example, recently constructed in a joint with S.Petite (following B.Deroin's technique).

Mon, 16 Feb 2009
15:45
Oxford-Man Institute

Stochastic billiards in unbounded planar domains

Dr Andrew Wade
(Bristol)
Abstract
 Motivated by ideal gas models in the low density regime, we study a randomly reflecting particle travelling at constant speed in an unbounded domain in the plane with boundary satisfying a polynomial growth condition The growth rate of the domain, together with the reflection distribution, determine the asymptotic behaviour of the process. We give results on recurrence vs. transience, and on almost-sure-bounds for the particle including the rate of escape in the transient case. The proofs exploit a surprising relationship with Lamperti's problem of a process on the half-line with asymptotically zero drift. This is joint work with Mikhail Menshikov and Marina Vachkovskaia.

Subscribe to Oxford-Man Institute