Thu, 18 Nov 2010

13:00 - 14:00
SR1

Algebraic approximations to special Kahler metrics

Stuart J Hall
((Imperial College, London))
Abstract

I will begin by defining the space of algebraic metrics in a particular Kahler class and recalling the Tian-Ruan-Zelditch result saying that they are dense in the space of all Kahler metrics in this class.  I will then discuss the relationship between some special algebraic metrics called 'balanced metrics' and distinguished Kahler metrics (Extremal metrics, cscK, Kahler-Ricci solitons...). Finally I will talk about some numerical algorithms due to Simon Donaldson for finding explicit examples of these balanced metrics (possibly with some pictures).

Thu, 11 Nov 2010

13:00 - 14:00
SR1

Maximum principle for tensors with applications to the Ricci flow

Christopher Hopper
(University of Oxford)
Abstract

The maximum principle is one of the main tools use to understand the behaviour of solutions to the Ricci flow. It is a very powerful tool that can be used to show that pointwise inequalities on the initial data of parabolic PDE are preserved by the evolution. A particular weak maximum principle for vector bundles will be discussed with references to Hamilton's seminal work [J. Differential Geom. 17 (1982), no. 2, 255–306; MR664497] on 3-manifolds with positive Ricci curvature and his follow up paper [J. Differential Geom. 24 (1986), no. 2, 153–179; MR0862046] that extends to 4-manifolds with various curvature assumptions.

Thu, 04 Nov 2010

13:00 - 14:00
SR1

Hypersymplectic Manifolds and Harmonic Maps

Markus Röser
(University of Oxford)
Abstract

In the first part of this talk we introduce hypersymplectic manifolds and compare various aspects of their geometry with related notions in hyperkähler geometry. In particular, we explain the hypersymplectic quotient construction. Since many examples of hyperkähler structures arise from Yang-Mills moduli spaces via the hyperkähler quotient construction, we discuss the gauge theoretic equations for a (twisted) harmonic map from a Riemann surface into a compact Lie group. They can be viewed as the zero condition for a hypersymplectic moment map in an infinite-dimensional setup.

Thu, 28 Oct 2010

13:00 - 14:00
SR1

Homogeneous Riemannian manifolds, Einstein metrics and the Ricci flow

Maria Buzano
(University of Oxford)
Abstract

We will recall basic definitions and facts about homogeneous Riemannian manifolds and we will discuss the Einstein condition on this kind of spaces. In particular, we will talk about non existence results of invariant Einstein metrics. Finally, we will talk briefly about the Ricci flow equation in the homogeneous setting.

Mon, 29 Nov 2010

16:00 - 17:00
SR1

TBA

Johan Bredberg
(Oxford)
Mon, 22 Nov 2010

16:00 - 17:00
SR1

TBA

Sebastian Pancratz
(Oxford)
Mon, 08 Nov 2010

16:00 - 17:00
SR1

Complex multiplication

Frank Gounelas
(Oxford)
Abstract

In this talk I will introduce some of the basic ideas linking the theory of complex multiplication for elliptic curves and class field theory. Time permitting, I'll mention Shimura and Taniyama's work on the case of abelian varieties.

Subscribe to SR1