Mon, 01 Nov 2010

16:00 - 17:00
SR1

Primes in short arithmetic progressions

James Maynard
(Oxford)
Abstract

The Siegel-Walfisz theorem gives an asymptotic estimate for the number of primes in an arithmetic progression, provided the modulus of the progression is small in comparison with the length of the progression. Counting primes is harder when the modulus is not so small compared to the length, but estimates such as Linnik's constant and the Brun-Titchmarsh theorem give us some information. We aim to look in particular at upper bounds for the number of primes in such a progression, and improving the Brun-Titchmarsh bound.

Thu, 21 Oct 2010

13:00 - 14:00
SR1

Models for threefolds fibred by K3 surfaces of degree two

Alan Thompson
(University of Oxford)
Abstract

A K3 surface of degree two can be seen as a double cover of the complex projective plane, ramified over a nonsingular sextic curve. In this talk we explore two different methods for constructing explicit projective models of threefolds admitting a fibration by such surfaces, and discuss their relative merits.

Thu, 14 Oct 2010

12:00 - 13:00
SR1

Homotopy theory for C*-algebras

Michael Groechenig
(Oxford University Mathematical Institute)
Abstract

The theory of C*-algebras provides a good realisation of noncommutative topology. There is a dictionary relating commutative C*-algebras with locally compact spaces, which can be used to import topological concepts into the C*-world. This philosophy fails in the case of homotopy, where a more sophisticated definition has to be given, leading to the notion of asymptotic morphisms.

As a by-product one obtains a generalisation of Borsuk's shape theory and a universal boundary map for cohomology theories of C*-algebras.

Tue, 16 Nov 2010

14:00 - 15:00
SR1

(HoRSe seminar) On the calculus underlying Donaldson-Thomas theory I

Kai Behrend
(Vancouver)
Abstract

On a manifold there is the graded algebra of polyvector fields with its Lie-Schouten bracket, and the module of de Rham differentials with exteriour differentiation. This package is called a "calculus". The moduli space of sheaves (or derived category objects) on a Calabi-Yau threefold has a kind of "virtual calculus" on it, at least conjecturally. In particular, this moduli space has virtual de Rham cohomology groups, which categorify Donaldson-Thomas invariants, at least conjecturally. We describe some attempts at constructing such a virtual calculus. This is work in progress.

Tue, 12 Oct 2010

14:00 - 15:00
SR1

(HoRSe seminar) Spherical objects on K3 surfaces I

Daniel Huybrechts
(Bonn)
Abstract

Both parts will deal with spherical objects in the bounded derived

category of coherent sheaves on K3 surfaces. In the first talk I will

focus on cycle theoretic aspects. For this we think of the Grothendieck

group of the derived category as the Chow group of the K3 surface (which

over the complex numbers is infinite-dimensional due to a result of

Mumford). The Bloch-Beilinson conjecture predicts that over number

fields the Chow group is small and I will show that this is equivalent to

the derived category being generated by spherical objects (which

I do not know how to prove). In the second talk I will turn to stability

conditions and show that a stability condition is determined by its

behavior with respect to the discrete collections of spherical objects.

Subscribe to SR1