Thu, 10 Jun 2010

12:00 - 13:00
SR1

Geometry with torsion and multi-moment maps

Thomas Bruun Madsen
(Odense)
Abstract

On any Hermitian manifold there is a unique Hermitian connection, called the Bismut connection, which has torsion a three-form. One says that the triplet consisting of the Hermitian structure together with the Bismut connection specifies a Kähler-with-torsion structure, or briefly a KT structure. If the torsion three-form is closed, we have a strong KT structure. The first part of this talk will discuss these notions and also address the problem of classifying strong KT structures.

\paragraph{} Despite their name, KT manifolds are generally not Kähler. In particular the fundamental two-form is not closed. If the KT structure is strong, we have instead a closed three-form. Motivated by the usefulness of moment maps in geometries involving symplectic forms, one may ask whether it is possible to construct a similar type of map, when we replace the symplectic form by a closed three-form. The second part of the talk will explain the construction of such maps, which are called multi-moment maps.

Thu, 03 Jun 2010

12:00 - 13:00
SR1

Cohomology of moduli spaces

Oscar Randal-Williams
(Oxford)
Abstract

I will discuss what is known about the cohomology of several moduli spaces coming from algebraic and differential geometry. These are: moduli spaces of non-singular curves (= Riemann surfaces) $M_g$, moduli spaces of nodal curves $\overline{M}_g$, moduli spaces of holomorphic line bundles on curves $Hol_g^k \to M_g$, and the universal Picard varieties $Pic^k_g \to M_g$. I will construct characteristic classes on these spaces, talk about their homological stability, and try to explain why the constructed classes are the only stable ones. If there is time I will also talk about the Picard groups of these moduli spaces.

Much of this work is due to other people, but some is joint with J. Ebert.

Thu, 27 May 2010

12:00 - 13:00
SR1

Anabelian Geometry

Frank Gounelas
(Oxford)
Abstract

This talk will largely be a survey and so will gloss over technicalities. After introducing the basics of the theory of the étale fundamental group I will state the theorems and conjectures related to Grothendieck's famous "anabelian" letter to Faltings. The idea is that the geometry and arithmetic of certain varieties is in some sense governed by their non-abelian (anabelian) fundamental group. Time permitting I will discuss current work in this area, particularly the work of Minhyong Kim relating spaces of (Hodge, étale) path torsors to finiteness theorems for rational points on curves leading to a conjectural proof of Faltings' theorem which has been much discussed in recent years.

Thu, 20 May 2010

12:00 - 13:00
SR1

Poisson quasi-Nijenhuis manifolds with background

Flavio Cordeiro
(Oxford)
Abstract

\paragraph{} Poisson quasi-Nijenhuis structures with background (PqNb structures) were recently defined and are one of the most general structures within Poisson geometry. On one hand they generalize the structures of Poisson-Nijenhuis type, which in particular contain the Poisson structures themselves. On the other hand they generalize the (twisted) generalized complex structures defined some years ago by Hitchin and Gualtieri. Moreover, PqNb manifolds were found to be appropriate target manifolds for sigma models if one wishes to incorporate certain physical features in the model. All these three reasons put the PqNb structures as a new and general object that deserves to be studied in its own right.

\paragraph{} I will start the talk by introducing all the concepts necessary for defining PqNb structures, making this talk completely self-contained. After a brief recall on Poisson structures, I will define Poisson-Nijenhuis and Poisson quasi-Nijenhuis manifolds and then move on to a brief presentation on the basics of generalized complex geometry. The PqNb structures then arise as the general structure which incorporates all the structures referred above. In the second part of the talk, I will define gauge transformations of PqNb structures and show how one can use this concept to construct examples of such structures. This material corresponds to part of the article arXiv:0912.0688v1 [math.DG].\\

\paragraph{} Also, if time permits, I will shortly discuss the appearing of PqNb manifolds as target manifolds of sigma models.

Mon, 31 May 2010

16:00 - 17:00
SR1

Looking at Elliptic L-functions via Modular Symbols

James Maynard
(University of Oxford)
Abstract

We have seen that L-functions of elliptic curves of conductor N coincide exactly with L-functions of weight 2 newforms of level N from the Modularity Theorem. We will show how, using modular symbols, we can explicitly compute bases of newforms of a given level, and thus investigate L-functions of an elliptic curve of given conductor. In particular, such calculations allow us to numerically test the Birch-Swinnerton-Dyer conjecture.

Mon, 24 May 2010

16:00 - 17:00
SR1

Galois representations III: Eichler-Shimura theory

Tobias Barthel
(University of Oxford)
Abstract

In the first half of the talk we explain - in very broad terms - how the objects defined in the previous meetings are linked with each other. We will motivate this 'big picture' by briefly discussing class field theory and the Artin conjecture for L-functions. In the second part we focus on a particular aspect of the theory, namely the L-function preserving construction of elliptic curves from weight 2 newforms via Eichler-Shimura theory. Assuming the Modularity theorem we obtain a proof of the Hasse-Weil conjecture.

Mon, 17 May 2010

16:00 - 17:00
SR1

Modularity and Galois representations

Frank Gounelas
(University of Oxford)
Abstract

This talk is the second in a series of an elementary introduction to the ideas unifying elliptic curves, modular forms and Galois representations. I will discuss what it means for an elliptic curve to be modular and what type of representations one associates to such objects.

Thu, 13 May 2010

12:00 - 13:00
SR1

Moduli of sheaves and quiver sheaves

Vicky Hoskins
(Oxford)
Abstract

A moduli problem in algebraic geometry is essentially a classification problem, I will introduce this notion and define what it means for a scheme to be a fine (or coarse) moduli space. Then as an example I will discuss the classification of coherent sheaves on a complex projective scheme up to isomorphism using a method due to Alvarez-Consul and King. The key idea is to 'embed' the moduli problem of sheaves into the moduli problem of quiver representations in the category of vector spaces and then use King's moduli spaces for quiver representations. Finally if time permits I will discuss recent work of Alvarez-Consul on moduli of quiver sheaves; that is, representations of quivers in the category of coherent sheaves.

Subscribe to SR1