Law of the determinant
Abstract
What is the law of the determinant ?
I am going to give a survey about this problem, focusing on recent developments and new techniques, along with several open questions.
(partially based on joint works with H. Nguyen and T. Tao).
Simultaneous prime values of pairs of quadratic forms
Abstract
Given a form $F(x)$, the circle method is frequently used to provide an asymptotic for the number of representations of a fixed integer $N$ by $F(x)$. However, it can also be used to prove results of a different flavor, such as showing that almost every number (in a certain sense) has at least one representation by $F(x)$. In joint work with Roger Heath-Brown, we have recently considered a 2-dimensional version of such a problem. Given two quadratic forms $Q_1$ and $Q_2$, we ask whether almost every integer (in a certain sense) is simultaneously represented by $Q_1$ and $Q_2$. Under a modest geometric assumption, we are able to prove such a result if the forms are in $5$ variables or more. In particular, we show that any two such quadratic forms must simultaneously attain prime values infinitely often. In this seminar, we will review the circle method, introduce the idea of a Kloosterman refinement, and investigate how such "almost all" results may be proved.
11:00
``Relative CM-triviality and interpretable groups in the bad field''
Abstract
I shall present a geometric property valid in many Hrushovski
amalgamation constructions, relative CM-triviality, and derive
consequences on definable groups: modulo their centre they are already
products of groups interpretable in the initial theories used for the
construction. For the bad field constructed in this way, I shall
moreover classify all interpretable groups up to isogeny.
Birational geometry of moduli of sheaves on K3's via Bridgeland stability
Abstract
I will explain recent results with Emanuele Macrì, in which we systematically study the birational geometry of moduli of sheaves on K3's via wall-crossing for
Bridgeland stability conditions. In particular, we obtain descriptions of their nef cones via the Mukai lattice of the K3, their moveable cones, their divisorial contractions, and obtain counter-examples to various conjectures in the literature. We also give a proof of the Lagrangian fibration conjecture (due to
Hassett-Tschinkel/Huybrechts/Sawon) via wall-crossing.
Formality of ordinary and twisted de Rham complex from derived algebraic geometry
Abstract
Beautiful results of Deligne-Illusie, Sabbah, and Ogus-Vologodsky show that certain modifications of the de Rham complex (either the usual one, or twisted versions of it that appear in the study of the cyclic homology of categories of matrix factorizations) are formal in positive characteristic. These are the crucial steps in proving algebraic analogues of the Hodge theorem (again, either in the ordinary setting or in the presence of a twisting). I will present these results along with a new approach to understanding them using derived intersection theory. This is joint work with Dima Arinkin and Marton Hablicsek.
Donaldson-Thomas theory of toric CY 3-folds I
Abstract
I will explain an approach to study DT theory of toric CY 3-folds using $L_\infty$ algebras. Based on the construction of strong exceptional collection of line bundles on Fano toric stack of dimension two, we realize any bounded families of sheaves on local surfaces support on zero section as critical sets of the Chern-Simons functions. As a consequence of this construction, several interesting properties of DT invariants on local surfaces can be checked.
Complex projective structures and dynamics in moduli space
Abstract
We shall introduce complex projective structures on a surface, and discuss a new result that relates grafting, which are certain geometric deformations of these structures, to the Teichmuller geodesic flow in the moduli space of Riemann surfaces. A consequence is that for any Fuchsian representation of a surface-group, the set of projective structures with that as holonomy, is dense in moduli space.