Mon, 28 May 2012

16:00 - 17:00
SR1

The congruent number problem

Frank Gounelas
Abstract

Which positive integers are the area of a right angled triangle with rational sides? In this talk I will discuss this classical problem, its reformulation in terms of rational points on elliptic curves and Tunnell's theorem which gives a complete solution to this problem assuming the Birch and Swinnerton-Dyer conjecture.

Mon, 07 May 2012

16:00 - 17:00
SR1

p-adic zeta functions, p-adic polylogarithms and fundamental groups

Netan Dogra
Abstract

This talk will attempt to say something about the p-adic zeta function, a p-adic analytic object which encodes information about Galois cohomology of Tate twists in its special values. We first explain the construction of the p-adic zeta function, via p-adic Fourier theory. Then, after saying something about Coleman integration, we will explain the interpretation of special values of the p-adic zeta function as limiting values of p-adic polylogarithms, in analogy with the Archimedean case. Finally, we will explore the consequences for the de Rham and etale fundamental groupoids of the projective line minus three points.

Mon, 30 Apr 2012

16:00 - 17:00
SR1

Vinogradov's Three Prime Theorem

James Maynard
Abstract

Vinogradov's three prime theorem resolves the weak Goldbach conjecture for sufficiently large integers. We discuss some of the ideas behind the proof, and discuss some of the obstacles to completing a proof of the odd goldbach conjecture.

Thu, 26 Apr 2012

12:00 - 13:00
SR1

Teichmüller space: complex vs hyperbolic geometry

Alessandro Sisto
Abstract

Complex structures on a closed surface of genus at least 2 are in

one-to-one correspondence with hyperbolic metrics, so that there is a

single space, Teichmüller space, parametrising all possible complex

and hyperbolic structures on a given surface (up to isotopy). We will

explore how complex and hyperbolic geometry interact in Teichmüller

space.

Tue, 06 Mar 2012
10:00
SR1

Generalized Kahler structures on moduli space of instantons

Gil Cavalcanti
Abstract

We show how the reduction procedure for generalized Kahler  
structures can be used to recover Hitchin's results about the  
existence of a generalized Kahler structure on the moduli space of  
instantons on bundle over a generalized Kahler manifold. In this setup  
the proof follows closely the proof of the same claim for the Kahler  
case and clarifies some of the stranger considerations from Hitchin's  
proof.

Mon, 20 Feb 2012

16:00 - 17:00
SR1

Kloostermania

Alastair Irving
Subscribe to SR1