Representability of moduli stacks
Abstract
Derived moduli stacks extend moduli stacks to give families over simplicial or dg rings. Lurie's representability theorem gives criteria for a functor to be representable by a derived geometric stack, and I will introduce a variant of it. This establishes representability for problems such as moduli of sheaves and moduli of polarised schemes.
Cactus products and Outer space with generalised boundaries
Abstract
A cactus product is much like a wedge product of pointed spaces, but instead of being uniquely defined there is a moduli space of possible cactus products. I will discuss how this space can be interpreted geometrically and how its combinatorics calculates the homology of the automorphism group of a free product with no free group factors. Then I will reinterpret the moduli space with Outer space in mind: the lobes of the cacti now behave like boundaries and our free products can now include free group factors.
Smooth numbers in arithmetic progressions
Abstract
A number is said to be $y$-smooth if all of its prime factors are
at most $y$. A lot of work has been done to establish the (equi)distribution
of smooth numbers in arithmetic progressions, on various ranges of $x$,$y$
and $q$ (the common difference of the progression). In this talk I will
explain some recent results on this problem. One ingredient is the use of a
majorant principle for trigonometric sums to carefully analyse a certain
contour integral.
(HoRSe seminar) Joyce-Song wall-crossing as an asymptotic expansion II
Abstract
Joyce and Song expressed the wall-crossing behaviour of Donaldson-Thomas invariants using a sum over graphs. Joyce expected that these would have something to do with the Feynman diagrams of suitable physical theories. I will show how this can be achieved in the framework for wall-crossing proposed by Gaiotto, Moore and Neitzke. JS diagrams emerge from small corrections to a hyperkahler metric. The basics of GMN theory will be explained during the first talk.
(HoRSe seminar) Joyce-Song wall-crossing as an asymptotic expansion I
Abstract
Joyce and Song expressed the wall-crossing behaviour of Donaldson-Thomas invariants using a sum over graphs. Joyce expected that these would have something to do with the Feynman diagrams of suitable physical theories. I will show how this can be achieved in the framework for wall-crossing proposed by Gaiotto, Moore and Neitzke. JS diagrams emerge from small corrections to a hyperkahler metric. The basics of GMN theory will be explained during the
first talk.
Independent sets in hypergraphs
Abstract
We say that a hypergraph is \emph{stable} if each sufficiently large subset of its vertices either spans many hyperedges or is very structured. Hypergraphs that arise naturally in many classical settings posses the above property. For example, the famous stability theorem of Erdos and Simonovits and the triangle removal lemma of Ruzsa and Szemeredi imply that the hypergraph on the vertex set $E(K_n)$ whose hyperedges are the edge sets of all triangles in $K_n$ is stable. In the talk, we will present the following general theorem: If $(H_n)_n$ is a sequence of stable hypergraphs satisfying certain technical conditions, then a typical (i.e., uniform random) $m$-element independent set of $H_n$ is very structured, provided that $m$ is sufficiently large. The above abstract theorem has many interesting corollaries, some of which we will discuss. Among other things, it implies sharp bounds on the number of sum-free sets in a large class of finite Abelian groups and gives an alternate proof of Szemeredi’s theorem on arithmetic progressions in random subsets of integers.
Joint work with Noga Alon, Jozsef Balogh, and Robert Morris.
Exotic monotone Lagrangian tori
Abstract
There exist two constructions of families of exotic monotone Lagrangian tori in complex projective spaces and products of spheres, namely the one by Chekanov and Schlenk, and the one via the Lagrangian circle bundle construction of Biran. It was conjectured that these constructions give Hamiltonian isotopic tori. I will explain why this conjecture is true in the complex projective plane and the product of two two-dimensional spheres.
Ziggurats and rotation numbers
Abstract
I will discuss new rigidity and rationality phenomena
(related to the phenomenon of Arnold tongues) in the theory of
nonabelian group actions on the circle. I will introduce tools that
can translate questions about the existence of actions with prescribed
dynamics, into finite combinatorial questions that can be answered
effectively. There are connections with the theory of Diophantine
approximation, and with the bounded cohomology of free groups. A
special case of this theory gives a very short new proof of Naimi’s
theorem (i.e. the conjecture of Jankins-Neumann) which was the last
step in the classification of taut foliations of Seifert fibered
spaces. This is joint work with Alden Walker.